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Lecture – 25
Support Vector Machine – IV

We continue our discussion on the support vector machine.
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To quickly recollect we would like to form a decision boundary between the plus 2 class

initially plus and minus classes of this form, of the form W transpose x plus b equals 0

and we want the 1 with the highest margin.

So, we saw that we can actually solve a optimization problem to get the values of W and

b. Find W and b; there are the optimization problem is the following maximize margin,

which we found to be 1 by norm of w, such that a constant y i W transpose xi plus b

greater than equal to greater than 1 sorry not greater than equal to greater than 1 for all i.

So, this is a standard optimization problem, where we have a objective function which

we want to  minimize  in a  constant.  So,  what we do is  slightly  change the objective

function; see since this is the magnitude this will always be positive. So, I can actually

rewrite the optimization problem as the following.
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I am rewriting it again instead of maximize margin which was equal to 1 by norm of w, I

write down minimize W norm of w. In fact, since W is norm of W is positive, I can

actually minimize the square of norm of w. So, instead of norm of W I am doing the

square of it and I showed that the square off because norm of W remember it is W 1

square plus W 2 square. So, square of that is W transpose W into. So, W transpose W is

of this form is W you do this multiplication you will see will get square of this quantity.

So, sorry we minimize this quantity. In fact, not this I put some up or some reason such

that, y i W transpose x i plus b greater than 1 for all i. So, this is a optimization problem I

want to solve; what are the free note that this x i y i these are the training set these are

given for i equal to 1 to n these are given, so the free variables are W and p.

This has an objective function which we are minimizing and some constant.  So, this

problem  I  will  call  as  the  reason,  I  am  giving  some  name  it  is  called  a  primal

optimization problem so this is clear. So, this is a clean and nice optimization problem W

and some constant W transpose W and some constant W and b you have to find out and

once we know W and b I can use that to draw my hyper plane. So, obtain my hypothec

and when a new point comes I check which side of the hyper plane, it is I just check the

sign of W transpose x j let me call it, we just take the sign if it is positive plus class

negative minus class ok.



So, the reason I call it primal is that I will convert to an equivalent problem which we

will call as dual problem, I am not going into the optimization theory it turns out that this

transform problem the dual problem has exactly the same solution as the primal problem

they have identical solution. So, if I solve that dual problem I still get my value of W and

b, what is the dual problem? What the dual problem does is that it introduces a new set of

free variables known as Lagrange multipliers.

New set  of  free  variables  not  just  1  introduces  many what  it  does? So,  you have n

training points for each and every training point I introduce a Lagrange multiplier alpha

1 alpha 2 dot up to alpha N. So, basically n new free variables I introduced, these 3

variables I call the Lagrange multiplier I denote them by the symbol alpha 1 alpha 2

alpha N, and the dual problem will take this form it will take minimize; what the dual

problem will do basically I am saying is that it will convert this complex constant into a

simpler constant, by moving the constant to the objective function.

I introduce a term called lagrangian which is times let me write it down here. Sorry let

me explain.
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So, what I have done see this was the constant, I can actually I could have rewritten the

constant this way, I could have rewritten the constant as; so what I do this constant I take

here multiplied by alpha i, one thing you note that this is not just a single constant for



each and every I have this constant; so that means, if I put some value of i 1, 2, 3, 4 I get

a set of constants ok.

So, actually this means a set of constant like this and this is actually a set of constant so

each and every constant I move here each constant corresponding Lagrange multiplier

alpha 1 alpha 2 alpha n I multiply. So, I take this I multiply by alpha 1 I take this, I

multiply by alpha 2 and add them all up that becomes my new objective function l and

what is the constant? Constant is just that each of the Lagrange multipliers should be

positive or 0 positive or 0.

So, the problem is  see now we have more free variables wb and so many Lagrange

multipliers, but still it is easier to solve I will show it soon. So, these are the 2 problems

using optimization theory, you can actually show that they have identical solutions; they

have the same 1 and the same solution. So, what I will do is that, I will solve this dual

problem let me see how to solve it.
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I am no longer writing the primal problem, I want to solve this problem right and once I

solve it I will get value of W and b ok.

So, you know for minimization problem one thing holds that, if you take any function

and at the minima take the derivative it becomes 0. So, the derivatives in this case the

partial derivatives will vanish at the minima, let us see so first take partial derivative with



respect to W del L del w. So, this I will take partial derivative with W you can work out it

is just like plain plus 12 calculus let us see what it becomes. So, this is like half W square

so derivative of half W square is w, these W goes this becomes W summation alpha i x i

the second term alpha I b is independent of W so 0 summation alpha is 0.

So, this is the partial derivative at minima this will be 0. So, what we have is oh sorry I

missed something very important is. So, there was a y i you go back to the previous thing

I missed the y i, so there should be y i here. Simple derivative I missed a derivative

please correct me in the previous thing. So, it actually means that the weight vector I call

it as a weight vector is summation our y i x i alpha i your all the 10 on points, what it

means? You take each and every x i multiply it by alpha i, reverse it is sign depending on

the sign of yi add them all up, resultant vector is W here note this down.
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Now, wait is a symbol for all, now let us equate del L del b to 0, I equated del L del W

earlier  let  us  see;  this  term is  free  of  b,  only the  second term b,  comes  outside,  so

summation wi so this term this term is free of. So, summation alpha I yi b comes outside

take derivative with b goes away this  is  the third term is  also free of b so 0 partial

availability.

Let me write it down, see this is very simple algebra you have to just follow it. So, at

minima we have these 2 conditions. So, I do not may take the derivative with alpha is

now let me plug in this value of W in this equation of l plug in let me see what happens.
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These 2 e height at the minima, so if I plug in this value of W here and here, I get I am

just doing some algebra this value of W L, now substitute this one now the third term ok.

So, actually if you just plug in the value of W and just see that you when 2 summations

will  come and you will  get a equation of this  form. Now this quantity  is  0 and this

quantity is there, note one more thing is that see y i y j is 1 and minus 1 or 1 or minus 1

excise a vector excise a vector, but here I am taking the dot product of 2 vectors dot

product W transpose W dot product; dot product of 2 vectors is a scalar this is a scalar

alpha is a scalar. So, this entire quantity becomes a single scalar value right.

So,  let  me tidy  up  a  little  bit  so I  can  write  L as  see  even though this  seems very

cumbersome equations the actual algebra is very simple school level algebra, you just if

you just go through it with open heart, will easily understand it. This is my L that I want

to minimize subject to for all the way should I properly right.
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Yes  let  me  properly  right  it  once  believe  me  I  am copying  correctly,  i  this  is  my

constrained optimization problem. Note that now I have only 1 variable W and b are

gone by this substitution of the minima; I have only the Lagrange multipliers as free

variables ok.

So, even though this equation looks very cumbersome let me write a small matrix form

of this which will be more intuitive. So, let me define some matrix so what I do I form a

n by n matrix n is the number of training points, I pick up every pair of training examples

xi and xj I take that dot product and I multiply by them their class levels. So, this way I

get every entry of this n mind in matrix I call it a hessian matrix and then let me define

this to be this vector capital alpha to be this all LaGrange multiplier vectors and u to be a

vector of nN 1 with this notation; note this matrix is very critical, I take every pair of xi

xj multiply them multiplied by their class levels I form a matrix.

So, if there n points I get n by n matrix. So, I can rewrite this equation as like this you.
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If you remember the previous notations, I have made a small mistake. So, this only free

variable is this alpha is so this is quadratic in alpha you have this square term and can be

solved by a numerical method called quadratic programming QP and I get my value of

alpha n, I plug them in this equation to get my w; how to get b, I will explain in my next

lecture. So, with this so form this h matrix solve this optimization problem using QP get

values of alpha i plug in alpha i here to get W up to this you have them. So, slope up the

line you could find out next will discuss how to find b and some geometrical significance

of these Lagrange multipliers. So, I stop here today I will continue my discussion in my

next lecture.

Thank you.


