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Lecture — 21
K - Nearest Neighbor — V

In this lecture we discuss; how do we evaluate the classification algorithms, we have

designed so far.
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So, we have looked at 3 classification algorithms. So, far one was the decision tree
algorithm, one was the Bayesian classifier and then we studied the nearest neighbor
classifier for some value of k. So, now, the question is that how do we know that which

classifier to choose, which one is better which one should choose.

It turns out that depending on the problem you are solving some classify there is no
classifier which is good for all the problems, some problems some classifier is good,
some other problems some other classifier is good. So, it is very important to have
quantitative or objective measures of telling how good a classifier is. So, that is what we

will discuss in this talk.
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So, we will discuss 3 aspects, one is we define some equation, some metric which given
a classifier n a, n a problem it will tell how good the classifier is at that problem it will
give some value. So, different type of ways we can evaluate. So, for example, suppose
you are a student has given the exam and he has got the so many subjects are there and
he has got this amount of marks in each these percentage of marks in each of the subjects
how do you tell, do you consider the average of all marks do you consider the highest of

all marks and so on. So, different ways you can evaluate.

Second is once you have defined the performance measures how do I compute them
rather how do I estimate their value in a faithful manner. So, one is say for example,
when you are evaluating a student, one is saying what defines how good a student is,
second is do you take actually tests maybe unit tests and say maybe 5 test an year and the
at consider the marks of each of these states to properly estimate these measures that we

have defined.

And the second is now given these measures and their estimates how do you compare 2
algorithms. So, among algorithms this is actually not an easy problem because maybe
with respect to some measure one algorithm is better than the other. So, maybe in maths
one student is better than the has got more marks than the other, but maybe in history
another measure some other that is that student has got more marks than these. So, if

there are multiple measures, it is difficult to say that which algorithm among in this and



some aspects some algorithm is good other aspect of some other algorithm is good. So,

how do you compare that is what we discuss in this second aspect, third aspect ok.

So, before that let me tell you what is a classification talks basically. So, what you have

is let me make the picture clear for what you have.
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So, you have a training set on n training instances and you have a learning algorithm say
a Bayesian classifier or something which gives you a classification rule, gives you a
classification rule. What does the classification rule do, if you take in a new instance x
whose y is not known note that in the training instance I have a set of x whose class
levels I call y is already known supervised learning, we know the class levels of these

instances ok.

And then what this classifier does is that it predicts the class level of this new example x.
So, it predicts y let me call it as y hat predicts y. So, these algorithms that is why you are
also sometimes called predictive data mining algorithms the predict. Now, what this
performance evaluation matrix do is that it evaluates this classification rule in terms of
how good this prediction matches the actual value say for example, I am predicting a 2
class problem maybe I am predicting tomorrow there will be rain or there would not be

rain there will be rain or there would not be rain.



So, there are 2 classes rain or no rain and my rule say predicts rain tomorrow, today it
predicts the tomorrow it will rain. I will say my prediction is correct it has done a correct
classification, if it matches tomorrows fact that is tomorrow it has rained or not and I will

say it is misclassified if it does not match; so, that is the main intuition.

So, we basically find and these what I do I do not do for one instances, suppose goodness
will be not just for a single instance even though I will need it only for a single instance
is for if you do it 100 times how many times it matches the actual prediction in what

percentage of the time it matches the actual prediction.
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So, one way, one step to compute this matrix is to construct what is called a confusion
matrix, what is called a confusion matrix. So, what is a confusion matrix? It is a suppose
for a 2 class problem, 2 class problem it is a. So, it is a 2 by 2 matrix for a 2 class
problem. So, how do I get the matrix, I get the matrix in the following way what I do is

that.
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Of consider a test set of M examples whose class levels I know and let us say a number
out of this M examples actually belong to the first class let me call it as a yes class and

also predicted to be yes class.

So, a out of M, a out of m and this number I would call it as a true positive, actually
positive also predicted as positive these actually are it is a it is the most desirable case
then we consider b which is actually positive classified as negative. Actually positive

classified as negative, I call this a false negative similarly c is false positive and d which



is true negative. So, it is this; a and d which are correct classifications, these and these
are two types of errors, you can also easily think that m equals some of this equals the

sum of this.
So, this is the fundamental. So, how many these we can easily extend, like I can.
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Like this is actual, this is actual and this is predicted along the rows actual and along the
columns predicted. So, we have class 1, class 2 and so on and so on. So, I can extend this
concept and the diagonal is the correct classify the correctness. So, this is the

fundamental thing.
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Now, using this confusion matrix I can define several matrix. So, using this true positive,
true negative, false positive. false negative I can define several measures, the most
common is accuracy. So, it is the sum of the diagonal elements divided by total number
of elements this by this fine, you accept that this is a good measure important measure

what else. So, one I am just defining it is very important measure.
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But only this is sometimes misleading, take this example if the classes are imbalanced

sorry this may happen this is clear.
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So, I introduced another matrix called a cost matrix cost of each type of error. So, c is the

cost, this is what I want.
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So, now, I can have several cost sensitive measures using the cost matrix as well as the

confusion matrix many you may assume uniform cost also precision, if you go back it is.
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This by this ok.
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Similarly, you have recall which is a by a plus b. So, these are 2 measures commonly
used, we have a combination of precision recall called F measure, it is the harmonic

mean, it is the harmonic mean.
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in general you can have a weighted accuracy, remember the cost matrix where have a
weight as costs and. So, just accuracy is w 1, w 2; w all these are 0 one all these are

equal and 1 accuracy.
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If this is equal to 1, this is equal to 0 then weighted accuracy equal to precision equal to
precision. Similarly, if this is equal to one this equal to 0 and this is equal to 1, 0, 0, 1

you have recall.
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Now, the next question how to get a estimate of this accuracy precision and so on; what

size training set you test set you need?
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These are the methods.
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So, this is cross validation, the most common method these are the steps partition train k
fold do it average you take. So, this is clear the cross validation method, how to estimate

it each of these methods, gives a good method of estimating.

So, what you do you take a training set on that you find this take several training set take

the average of these values that is a good estimate. How do you compare models?
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ROC curve, this is the definition true positive, false positive and this is important all

right. So, this looks like this.
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So, area under ROC curve is a good measure. So, these are the measures so I am not
listing all of them you can go through them I can go through them test of significance
many thing. So, that is how you measure it.

So, I think you have got an idea of how to evaluate the classifiers, you if we have a

training set and it is set and these are commonly used for the classification. So, if you



apply this classification algorithm we have to use this. So, thank you for today will go

into the next topic in my next lecture.

Thank you.



