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Let, me quickly summarize the Bayesian classifier that we have designed so far. So, what

we did was we obtained examples of two classes.

(Refer Slide Time: 00:30)

It can be multiple classes also, so we had examples which consisted of measurements in

this particular case only a single measurement the length of a of some object which is in

this case is a fish which we are putting into one of the two classes tuna and hilsa. So, we

have observations and we consider the class label, which is h or t again in this case for

each of these observations  of l,  we put them into two groups,  one group for all  the

observations in a particular classes say Hilsa and other all the population in the other

class tuna and then we first construct the class conditional distribution. 

So, what we did in that case is we find out different values of the length l and count find

out the probability from the histogram counting that given a fish belongs to say class h,

what is the probability it has a length l, some length l 1, 2, 3, 4 some length l given that it

belongs to class eight. So, we construct a probability distribution of this type and we

repeat this for both the classes. So, similarly we construct l given t tuna class and you



construct another distribution. So, y x axis is length y axis is probability of a fish having

that length known that it belongs to class h known that it belongs to class t and we found

that this is not enough to take care of the bias in the population. 

So, we considered prior probabilities of a random fish without knowing what its length is

falling to the probability h to the class h and the probability a random fish belongs to the

class  t  and  what  we  did  was  we  used  the  Bayes  rule  and  obtained  the  posterior

distribution, which is probability f is belongs to certain class h given it is l has certain

value is actually not exactly equal, but proportional to let, me write it as proportional to

probability the class conditional probability that we find out earlier multiplied by the

prior probability. 

So, this gives the so this is the class conditional and this is the prior we multiply these

two to get the posterior distribution applying the Bayes rule. Note that there is a constant

denominator p l. Since, which is same for all the classes we ignore it and say this is

proportional, we similarly find the posterior distribution for both the classes t and h using

the same formula and plot the posterior distributions plot the posterior distributions of

each of the class. 

So, this is for h class and this pink one is for the t class and then as we had reasoned

earlier  we  will  find  that  the  minimum  error  would  occur,  if  the  decision  boundary

between both the classes lies at the intersection of the classes, lie at the intersection of

the classes.  So, what we actually  did was kind of I mean summarize these two in a

slightly different form which we call the Maximum Aposteriori Probability form of the

Bayes classifier, which says that once you construct the posterior probabilities and given

a new example with length L.
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I just checked the posterior probabilities for each of the classes whichever class provides

the higher posterior probability classify that particular example having length L to the

higher class higher probability  class.  So,  this  principle  we call  the map principle  the

maximum posteriori probability principle and this is equivalent to the Bayes classifier.

So, the and of course, we showed that this has the minimum error possible.

So, in order to actually use this classifier what we have to do is to kind of know the

distribution, the class conditional and the prior probabilities of each of the classes. So,

that we can apply it; so we also showed that you can actually extend it to multiple classes

applying the same map principle.
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And then we our next job is to actually find out these distributions and then apply the

(Refer Time: 06:27) and get the classifier.

So, now there are two ways of constructing this map rule one of the way is called a

parametric  method.  So,  what  the  parametric  method  does  is  that  it  makes  some

assumptions on this class distributions of this posterior class distributions we will make

some assumptions. 

So, one of the most common assumption is that you assume that each of these classes

each of this class distributions, follow a normal or a Gaussian distribution. So, often this

is a reasonable assumption, because most of the natural random variables which initial

length  of  the  fish or  height  of  a  person,  they  would have this  kind of  bell  separate

behaviour.  So,  there  would  be  a  mean  value  and  some  dispersion  around  it  some

dispersion. So, this is the mean value mu and this is the dispersion you call it lets say

sigma. 

So, we make this assumption and we will actually see that of course, the value of the mu

and the sigma they are unknown and what will actually do is that from the population

that you have from the training samples that we have, we will try to estimate the value of

mu and sigma there are definite  ways of doing that.  So, you for example,  mu is the

average value of all the training samples and sigma is the average value of the squared

difference of each sample from the mean value. 



So, standard deviation and mu we can estimate and after estimating (Refer Time: 08:59)

we have kind of we know these distributions and if we know this distribution. So, we can

find out what is their boundary in terms as a function of the values of mu and sigma, we

can find out the boundary. So, all of you know the form of the Gaussian distribution, it is

one by sigma into some form of sigma square into e to the power x minus mu by sigma

whole square negative power of that so, it decays (Refer Time: 09:37). So, if we work

out  just  as  an  exercise,  what  happens  when  each  of  these  class  distributions  are

Gaussians, but bivariate Gaussians a special case of multivariate Gaussians

(Refer Slide Time: 09:48)

For example, if I measure instead of just length the length and weight of the fish, as I

mentioned before each fish would look like a point in two dimensional space and this

representation would be called a feature space. So, suppose I draw it in a three d way,

and if I draw the posterior probabilities, they would look like bell three dimensional bell

separate curves each class would look like that. So, another class maybe will look like

this.

So, let us say this is the Hilsa class and this is the tuna class to this actually is and since,

this is two dimension the boundary will be not just a single b star I do we had noted

earlier in the one dimensional case, it would be that the a curve it would be the locus of

all two dimensional points, where this posterior distributions have same value intersect.



So, actually the if their distributions like this there will be some amount of overlap. So,

this region would be called as the overlapping region. So, this picture I am saying is a top

projection if we look from the top it is a projection on the LWspace, the I will have a

short discussion on the shape of these projections depending on the parameters of the

Gaussian distribution.

So, the amount of overlap depends on what is called the class separability. So, how well

separated two classes are; So, now what we plan to do is to find out the shape of this

locus of intersecting points the class boundaries two dimensional for the different type of

Gaussians, we have in the individual class distributions.

So, you know a Gaussian distribution is parameterized by two variables, one is the mean

vector, which will actually be like two values mean of the length of a Hilsa fish, say this

is the Hilsa distribution and mean of the weight of the Hilsa fish, here is the mean vector

and then there will be a covariance matrix, there will be a covariance matrix. 

So, this mean vector will determine this kind of the central point it will determine, where

my these bells are placed where in the coordinate system our bells about the close are

their part where they at least and this covariance matrix, will determine what is the shape

of this  projections,  it  will  determine  what is  the shape of this  projection.  So, let  me

quickly tell you how these projections look like.

(Refer Slide Time: 14:57)



So,  they  are  determined  by the  covariance  matrix.  So,  what  does  covariance  matrix

means I am telling you, covariance matrix is a matrix whose size if we have d dimension

in this case we have two dimension is 2 by 2 d by d . So, you have d by d so what are the

values of the entry let me first define what is a variance all of you know it. 

So, variance of a random variable x is what is the mean of a random variable x, mean of

a random variable x is the expected value of x, which means that you can estimate it in

the following way if you have n samples, x 1, x 2 in plain terms, there are some technical

points, which I am not discussing here, if you have x 1, x 2 x i, x n points all of them

vectors each of them vectors, you do is that you take a sum off all these vectors of the all

x i vectors i equal to 1 to n just add them up term by term and then take average value. 

So, these would give me kind of a mean vector, meaning it would give me the most

centrally located point among this all the tuna, all the tuna fishes that we acquire out all

these tuna fishes it would give the most central (Refer Time: 17:00) similarly for Hilsa.

Now, what is sigma? So sigma is the and the estimate of sigma is, if you instead of

adding up just x you take the difference of x from the mean value take the difference of I

am not  putting  x this  is  the mean take the difference  of x from the mean value  the

deviation, x from the central value square it up and add it up square and add it up and

take the average value of this dispersion take the average value of dispersion. 

So, that is a kind of measure of the dispersion of the distribution. So, this would be if you

have a distribution like this  on x this is the mean and kind of this  is  the spread the

dispersion. So, you can have sharper distributions with small mu has small sigma and

you can help spread distributions with larger sigma ok so now these covariance matrix

what it looks like is the following.
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This covariance matrix this sigma as long as it is a univariate random even its fine, but if

you have  multivariate  then  sigma is  more  complex  this  dispersion  is  more  complex

because, in the univariate case dispersion is just kind of sorry, I am better drawing this it

is just kind of you take some threshold of the probability measure its distance from the

mu and this must interval this much length is my sigma that measures the distribution,

but in circles or ellipses it is not. 

So, easy to measure the distribution how do you measure it. So, it will look like this I

have the following quantities, I am not writing down algebraic equations you can you

have done the statistics course. So, I assume that you know the definitions of this I am

trying to geometrically explain what it means. The sigma 1, 1 it is the dispersion of the x

component of the vector from the mean value of this x component is kind of say I am

finding sigma for this tuna case, this big ellipse. 

So, this sigma 1, 1, would kind of measure the dispersion along the first axis the x axis.

So, this is sigma 1, 1 and then sigma 2, 2 would measure the dispersion along the second

axis so this would be sigma 2, 2. In this case, if the sigma you can naturally guess that

the this axis of the ellipse is longer than the y axis spread along y direction. So, sigma 1,

1 is greater than sigma 2, 2 that is why it is an ellipse one of the axis is longer than the

other axis, what happens if they are equal if sigma 1, 1 was equal to sigma 2, 2 then this

projections would look like circles all right.



So, now one more thing in this particular case the sigma 1, 2 sigma 2, 1, are actually 0

because you see this plate and this plate they are kind of orthogonal to each other they

are axis aligned, they are axis aligned the principal axis of the ellipse and the second

minor axis are axis aligned.  So, the cross dispersion are might achievable here what

would happen, if this cross dispersion the off diagonal terms of the covariance matrix are

not 0, we would get ellipses which are tilted which are tilted not axis aligned. 

So, that is what we would get alright. So, it is clear so if for the two variate case, we will

get ellipses projections the axis of the ellipse will depend on the diagonal elements of the

covariant matrix and the tilt of the ellipse would depend on the up diagonal element of

the covariance matrix. Now, let us look at one special case.

(Refer Slide Time: 22:24)

Let us look at a case, where the mean can be anything let us, say mu H and mu t. So,

your centres of these ellipses can be located anywhere, but the covariance matrix of both

the ellipses take this form both the ellipses sigma H is of this form sigma t is also of this

form up diagonal  elements  0 and diagonal  elements  are,  equal  what  does  this  mean

basically  this  means  up  diagonal  element  0  means,  the  projections  of  they  are  axis

aligned and same value for both the diagonal elements  that this  they means that this

projections are circular. 

So, this picture is actually not correct so I would actually have things like this. So, if this

be the case, question is what is the Bayes optimal classifier? What is the locus of points?



Which gives equal probability for both these normal distributions, N H and N T and for

both these normal distributions what are the probabilities, I give it as exercise to you I

am not doing it though it is very easy to do is that if you just write down the equation for

the normal distribution and pick up all x, for which N H x equals N T x. N H x is the

probability of x belonging to the normal distribution formed by h which has mean mu H

and sigma, sigma H and another probability of n belonging to mu T sigma t, thus tuna

distribution. 

If we equate this and find out all the x stars which satisfy this quantity you will see that

the locus of those points which from the decision boundary.

(Refer Slide Time: 24:52)

The class boundary will be nothing, but the following. You take the you join both the

means mu H H and mu T and draw its perpendicular bisector ok.

So, what is the property of the perpendicular bisector each point x on the perpendicular

bisector a equidistance from mu T and mu h. So, take any point in the bisector they are

equidistance. 

So, basically x minus mu T sigma is same for both is x minus mu H by the way sigma

will no longer be like this sigma will actually look like this it will look like, the distance

will look like x minus h mu t, the sigma H inverse and this into transpose of this into mu

H to mu inverse x minus mu H mu h sorry, you can work it out. So, basically if you work



out the perpendicular bisector all locus of all points equidistance from both the mean,

will actually give you the class boundary just work it out. Let us look into the second

case, that where the means are ok.
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There you have two means, but individual classes are no longer two circle earlier it has

two circles of same size, same sense, same sigma. Now, I have two circles no more no

ellipses yet, but two circles one small one large one mu H mu T two circle centres, but

one which sigma H diagonal sigma H and one with sigma t, where sigma H takes the

form sigma H 0, 0 sigma H still circle still axis aligned circle, but this sigma t and sigma

H are no longer same so one circle is larger than the other circle.

So, what are the equi probable points now what is the locus of points which are equi

probable let us see, so earlier I said for the equal circular it is locus of all points the

perpendicular  bisectors,  which are equidistance  from both the centres  equi Euclidean

distance from the both the centres.

We will see that in the next case, we will actually have to locus as all points, which are

equidistance from both the means, but not the Euclidean distance some other distance

called  the  Mahalanobis  distance.  A simple,  extension  of  the  Euclidean  distance  the

Mahalanobis distance and in both unequal sized case, the locus is nothing, but not the

perpendicular bisector which is equi Euclidean distance from both centres, but all points

which are equi Mahalanobis distance from both the centres ok.



So, in my next lecture soon I will first discuss, what is Mahalanobis distance? And find

out the expression. So, this is the end of this lecture thank you, I will after this I will

continue with my definition of the Mahalanobis distance ok. I will continue with this.
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