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Bayes Classifier – II

We continue our discussion on the Bayes classification rule.
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So,  to  quickly  review  what  we  have  studied  so  far,  we  draw  the  class  conditional

distribution that is probability that; if I know the classy HILSA, what is the probability

that that fish has a length L. Similarly, for TUNA and I found that the optimal decision

boundary was at the intersection of these two form points.
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So,  one  problem  with  this  approach  is  that  it  will  this  this  curves  may  be  biased

depending on where we take our population from to compensate for that we introduce a

notion called apriori probability. So, apriori probability is probability that a randomly

chosen phase belongs to class HILSA and a randomly chosen fields belongs to class

TUNA know L involved.

So, what I do is the following in my original curves let me show you the curve I multiply

this class conditional curve by this apriori probability, by this apriori probability and I

multiply this class similarly by this apriori probability. So,  depending on what my P H

equal to P T the curve remains as it is if P H is greater this curve goes up, the other curve

goes down and vice versa. So, I scale the class conditional by the prior multiply it by the

prior, and my nu B star e the place where this multiplied curves intersect, that is my B

star say prime. So, let me write this down algebraically.
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So, I  multiplied the class conditional by the prior, and I divide it by the probability of

length being two feet for example, in this case. So, I multiply the class conditional by the

prior what I get is something called a posterior a posterior distribution meaning why

posterior  you know the Bayes rule which says that  P of A given B into  P B equals

probability of B given a into P A.

So, what I actually do is kind of, and of bring this to the denominator of the right hand

side doing this to the denominator of the right hand side and make it p b. So, a P A is the

prior, prior probability aprior probability, P B given a is probability length equal to two

feet given it belongs to class a, this is probability of a random piece belonging to class a,

this is class conditional. So, class conditional into prior divided by P B note that this

denominator whatever class I take is same it is independent of class. So, if I multiply if I

multiplied both the curves by one by P B both will equally scale. So, the intersection will

not change. So, the denominator is kind of a is a scale factor same for both classes.

Bayes rule tells me that this quantity equal’s probability of a given B means probability

of f is being HILSA given that it lengths is two feet. So, if I measure a length to be of f is

to be up two feet long what is the probability it belongs to class HILSA, how do I get

that I use the class conditional that is distribution of length of all hill surfaces multiplied

by the prior probability of a random piece being HILSA and I get the posterior, all right.



So, this I have written out the definitions, class conditional is this prior is this posterior is

the product, divided by a constant factor for each of the classes.

So, what I actually do is that I find the posterior for both the classes, I find the posterior

for  HILSA, I  find the  posterior  for  TUNA and instead  of  earlier  I  was drawing the

intersection  of  two  class  conditionals,  I  just  change  that  rule  and  I  say  I  draw  the

distribution of the posterior probabilities so.
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This is divided by some constant factor probability of a random piece having length L,

irrespective of class. So, actually if I drop this in both sides, I will still get the same

intersection and my B star boundary is now the intersection of these posteriors not the

class conditional as I had mentioned earlier, because it takes best better care of the bias in

the population it still has the minimum error.

So, this is my definition of B star it still has the minimum error you can actually seen by

looking at the area and this is what I lose. So, this classifier since, it uses this Bayes rule

is called a Bayes classifier, and it is actually sometimes called a Bayes optimal classifier

and B star is called a Bayes optimal boundary, it has the minimum error possible. So, I

repeat my steps what I had done, repeat my steps with these pictures. So, repeat my steps

so what I actually do let me look back a little I collect a population.
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 I draw this histogram for HILSA, distribution of length I draw the class sorry, I draw the

class conditional.

(Refer Slide Time: 09:26)

.

Distributions for class conditional distributions for each of the class, then I estimate the

prior probabilities, how I estimate the prior probabilities just count in the population how

many are HILSA, how many are TUNA, that fraction is my probability that fraction is

my probability and what I do is that this last curve. After I find a prior I multiply this



curve, this I multiply by the HILSA, this I multiply by P TUNA, and what I get as a

result is the reverse P HILSA given L the posterior P TUNA even L.

So,  first  compute  this  from the  population,  then  compute  this  from the  population,

multiply them ignore the constant factor in the denominator get the posterior, repeat this

for the TUNA class get the posterior, draw these two I have drawn this two draw these

two  distributions  and  same  as  before,  set  your  B  star  to  be  the  intersection  of  the

posterior distributions and it can it will still have the minimum error, all right. So, now,

this is fine this is this I call as the Bayes classifier, let me make life a little bit easier for

me.
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Instead  of  finding  the  intersection  solving  these  two  equations  and  finding  the

intersection, I do the following you make a observation that to the left of this B star the

HILSA region, the blue curve the HILSA curve is above the pink curve the TUNA curve,

and to the right  of this  distribution,  which is  the TUNA region the TUNA curve the

TUNA curve stays above the HILSA curve, the pink is above the blue pink is about the

blue. So, here pink is above the blue here blue above the pink.

So, instead of finding out what the value of B star is I can do the following given a new

fish,  you  find  out  its  probability  of  belonging  posterior  probability  of  belonging  to

TUNA, find its posterior probability of belonging to HILSA, compare these two values

whichever  value  is  higher,  put  it  in  that  class,  whichever  value  is  higher  find  this



posterior  of  one  class  find  the  posterior  of  the  other  class  compare  these  values

whichever is higher classify it into that class.

So, I can sort of restate my Bayes classifier as the maximum posterior classifier these

curves are the posterior probability curves and my rule is put it into that class, which has

the  higher  highest  posterior  probability. The  map rule  you follow the  map principle

maximum aposteriori probability principle, it is same as the Bayes classifier.
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These, particular formulation actually helps me generalize this Bayes classifier to more

than two classes. So, suppose there are three classes of fish in general let us say there are

k classes of fish, let us say HILSA and TUNA and SHARK, I using that Bayes rule, I

find this posterior sorry, I find out this posterior, which is a class conditional inter prior

for HILSA, I find out the posterior curve for TUNA, pink I find the posterior curve for

SHARK black.

Now, for a new fish a measure it L, suppose L is this value L1 I draw a vertical line L1.

At that particular point out of these three whichever curve is the top most curves, put that

fish of length L1 into that class. So, basically follow the map principle and this will give

me the Bayes classifier.

So, again to summarize if I have k class, take a population find out the class conditional

distributions for each of the class, find out the prior probabilities for each of the class



multiply them to get the posteriors though the posterior distribution, for each of the class

for a new fish L1, classify it into a class which has the highest posterior for that value of

L map, good I think you have understood up to this.

So, now you may ask the question that well you say that this is the Bayes classifier, this

has the minimum error. So, why not use this always, why do I use this son tree or say

support vector machine or something why not always use Bayes classifier the thing is

that if I know these posterior distribution, if you know the class conditional distribution,

then I can only find out the Bayes classifier of course, if somebody tells me that this is

that class conditional. I will definitely use the Bayes classifier, but nobody will tell me

what the class conditional distribution is what I have done in this first example, by going

to the market and drawing this curve is only an estimate of this distributions of course,

this estimate will be correct if I draw a large sample, but it is only an estimate it will have

an error, it will it is only, it is not the it is not exactly the unknown distribution it is an

estimate of the unknown distribution there are estimation errors.

So, that is the problem, so even though Bayes classifier is the best you as a precondition

to applying the Bayes classifier you have to know the distributions. If you do not know

the distribution you estimate it and that why there will be a some error, and because of

that error it may not might not give you the optimal classifier.

So, what I will do next for one dimension I have seen that the decision boundary was as a

point L star, B star suppose my classes are multivariate to bivariate distribution.
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So, instead of characterizing a fish only by its length, I measure the length as well as

weight. So, any fish is a point in, any fish is actually a point in two dimensional space is

the point in two dimensional space, some length fell some weight fell. So, now if I take a

number of TUNA, they will  have some mean length weight  and there will  be some

distribution variance around that there will be for HILSA also, let us assume that this

individual distribution are in normal distributions bivariate Gaussian distributions.

So, how does bivariate Gaussian distribution actually look like? So, for example, if this

is my L and this is my W and if I in the z axis if I draw my probability, they look like

bells, bells aped curves, if I project them they will look like circles or ellipses. So, they

will be like a bell over L W (Refer Time: 22:27) L W plane. So, I have one such bell for

that TUNA note that, so what I am drawing here is actually the projection of the bell to L

W space, I am looking from the top this is a picture looking from the top similarly, I have

a  bell  for  HILSA and  this  projections  will  either  look  like  an  circle,  if  this  bell  is

symmetric or look like an ellipse, if the bell is elongated more in one direction than the

other, now earlier I said if when the univariate case the boundary was the intersection

between two distributions, but now if we put two such bell if we put to such bells their

intersection is not a point, but a curve between them in L W space, L W plane if we just

look at values where these two bells intersect I will get a curve. 



So, this curve is actually  my decision boundary what will work out is if  I know the

parameters  of  this  class  I  have  the  posterior  distributions  and  assume  them  to  be

Gaussian or normal distribution. 

How does this decision boundaries look like, what type of curve they are you know a

Gaussian distribution, a normal distribution is parameterized by two parameters the mean

value and a variance value mu sigma, in the case of 2 dimensional bivariate Gaussians

the  mu  will  be  nothing,  but  a  2  dimensional  vector  representing  this  centre  it  will

dimensional  vector  and sigma will  be a 2 by 2 matrix.  So,  this will  mu will  be a 2

dimension L W vector and sigma will be a, let me write it as capital sigma will be a 2

dimensional matrix. 

Where the entries are the following the first entry is variance of L with itself the second

entry is variance of W with itself. So, if let me define what variance is so sigma roughly

is if I have n samples, it is the variation of x from the mean square of that summed over

all the x. So, if you take x 1 x 2 x 3 x n. So, x i if each of this x i, I find how far it is from

mu take the difference square it  up edit up over all  n, take the average value of this

squared error, it measures the kind of spread of the distribution whereas, mu measures

the central location of the distribution.

If I have a bivariate the, it is not just a sigma is no longer a scalar it is a matrix. So, you

know, what does the matrix look like? Matrix will look like I am getting 30. So, the

matrix will look like, it is the sigma of L mean value of length and variation of length of

each fish from this mean value for TUNA class or HILSA class mean value of W, the

average weight of a TUNA and how the weight of individual TUNAs differ from this

average weight squared data, some data and then the covariance’s. 

So, covariance is a cross term; that means, variation of length with respect to average W

variation of W with respect to average L same thing, but the central cross. So, suppose

somehow by estimation or something I know the mean value and sigma value of TUNA,

I know mu T sigma T. 
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And I know mu H sigma H, then I want to derive the decision boundary as a function of

mu T mu I sigma T sigma H, if you remember the Gaussian distribution next it takes this

particular form.

So, e to the power minus x minus mu by sigma square and then some constant term of

sigma, so this is how the probability of x belonging to this Gaussian distribution, looks

like. So, I will use that expression and I will derive under various conditions on mu and

sigma what does this boundary look like actually I will  give you as an exercise you

consider two special cases, if the sigma is a diagonal matrix and unit diagonal matrix. So,

basically these are unit spheres each of them both of them have same sigma, and unit

diagonal matrices hence, some value of mu H and mu T, some value of mu H and mu T. 

Then putting this thing where does posterior assume class conditionals are same 5.0, 5.0,

5  for  both  I  sorry  assumed  5  are  same  5.0,  5.0  for  both  when  does  the  posterior

distribution give at what values of what is the locus of the values of x, which keeps same

value of probability for both the distributions mu T sigma T mu H sigma H, I am not

writing the exact form you should write it. 

So,  where  does  this  to  equate  over  which  locus  of  x  that  is  finding  surrounded  by

definition  of  the  (Refer  Time:  30:26)  classify.  So,  we  will  derive  it  for  different

assumptions on mu and sigma and we will see they have a nice geometrical form. So,



with this assignment you should work out I end today's lecture I will continue discussion

on this in my next lecture.

Thank you.


