
Introduction to Soft Computing
Prof. Debasis Samanta

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 37
Training ANNs (Contd.)

So, we are discussing Training Artificial Neural Networks.
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So, far we have discussed about so, how to train a neural net; it is basically based on the

concept of learning. There are different learning techniques and we have considered the

learning techniques again varies from different network architecture to different network

architecture. In the last lectures we have discussed about how a single layer feed forward

neural  network  can  be  trained.  Today,  we  are  going  to  discuss  the  multilayer  feed

forward neural network training and then the recurrent neural network training will be

discussed.

Now, so, multilayer feed forward neural network training, basically, the similar approach

to that of the single layer, but it follows more method more what is called a meticulous

method,  particularly  it  is  if  you  consider  the  supervised  training  then  it  consider

algorithms to train it and the popular algorithm in this regard is called back propagation

algorithm.
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So, today will discuss about the algorithm the whole. Now, before going to discuss about

training a multilayer feed forward neural network for the simplicity of the discussion we

will consider a multilayer feed forward neural network with the configuration l-m-n that

is called the l-m-n network and it is basically a three layer feed forward neural network

and l basically the number of neutron in the number of neurons in the first layer and m

denotes the number of neuron in the hidden layer and n is the number of neuron in the

output layer or in other words l-m-n network is basically a network with l number of

input and n number of output.
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Now, let us see this figure, because our many discussion subsequently will be refer from

this figure only. In this figure we have depicted the architecture of a l-m-n feed forward

neural network and in this architecture. As you see this basically the input layer and this

is the hidden layer and this is the output layer. So, the input layer network is called the N

1 the network which is there in hidden layer is called the N 2 and hidden layer that is

there in output is called the N 3.

So, we can see it is basically the cascading of 3 network N 1, N 2 and N 3 one by one is a

cascading in the sense that the. So, this is the input to the input layer and here we can

consider l number of inputs the l number of inputs are denoted as I 1, I 2 dot dot I l and

then subscript denotes that it is a input layer. So, so these are the input basically and so,

the set of input we can denote it is I and these are the perceptrons in this input layer l

number of perceptrons are there. So, they are termed as 1 1, 1 I, 1 l like this one. So, one

indicate that it is a first layer and then next symbol increases that which make symbol if

it is I indicate that is i-th perceptron in the first layer.

Now, the input to any perceptron is basically this one. For example, to this perceptron

input is I 1 to this perception input is this one and. So, on now output of a perceptron in

the input layer we denotes it is O I; O I denotes the output of the input layer and here we

can say that the output of the input layer is basically input to the hidden layer. So, input

to the hidden layer we denoted I H. Similarly, the output of the hidden layer we denoted

O H. So, these are the output of the hidden layer and the output of the hidden layer is

basically output of the output layer and input of the output layer we denoted I O. So,

these are the basically input of the output layer and finally, this is the output layer is

called the O.

So, here basically I and then O input and output through this network right it basically

mapped from an input to output. So, this is idea about it. Now, so, this is the working of

the multilayer feed forward neural network more specifically l-m-n network now here

will consider few more things as I told you this is a network n and size of the network N

is l similarly, this is our network N 2 size of the network is m and this is a network N 3

size of the network is n n. So, l-m-n like.

Now, in each perceptron here in the input layer they will follow each perceptron they

will follow transfer function and then thresholding value for the simplicity for. So, this is



the idea. So, if this contains the first perceptron in the input layer we denote the transfer

function as f i i. So, f i this is the f i means the transfer function of the i-th perceptron in

the input layer this one.

So, this is basically it basically I i, I i and theta i where theta i is the threshold value for

this perceptron. So, what I want to say is that, so, each neurons are characterized with

their own transfer function and then thresholding value and then input when give it pass

predict through this input it will produce output. Now, this output then will be fitted to all

the neurons in the hidden layer. So, this output go to this layer this layer this perceptron

and this perceptron and this one.

Now, whenever this output of the input layer goes to the goes does an input to the hidden

layer they will be associated with weights. So, from the perceptron one in the input layer

if it is goes to the perceptron one in the hidden layer we can say that it is weighted by V

1 1. So, similarly we denote V I j; that means, it is a weight for the input when it passes

from the i-th perceptron in the input layer to the j-th perceptron in the hidden layer, so, V

i j. So, this basically constitutes the weights for all signals that can be fed to the hidden

layer and we can represent this weight by means of a matrix, V matrix that we have

already discussed and it is similar the that of the single layer feed forward network. So,

in this case the matrix is size l cross m. So, this is basically l m matrix, l number of rows

and m number of columns are their.

Next,  the  output  of  the  hidden  layer  goes  to  the  goes  as  an  input  to  a  where  each

perceptron in the output layer for example, if j-th new perceptron it is there in hidden

layer so output from this perceptron goes there and goes all the perceptrons in the output

layer. Now, likewise the input to the hidden layer here also all input to the output layer

will be associated with weights. So, these are the weight matrix and this weight matrix is

denoted by W m and in this case the size of the weight matrix is m cross n, because from

m number of perceptron it goes to the n number of perceptron in the output layer. So, m

cross n.

So, it is a similar the V matrix that we have discussed in the previous in between input to

hidden layer here also W matrix is between hidden layer to output layer. Now, again for

each perceptron in hidden layer it will be characterized with transfer function and then

thresholding value. So, if it is in the j-th layer j-th perceptron in this layer then we can



represent that f j m and this basically the input to the j-th perceptron and this alpha is a

threshold value we can assume here that all the transfer function that it basically here for

each perceptron is denoted by this one it is basically log sigma transfer function and in

this case we have considered a linear transfer function, that means, it is simply the pass

input to the output.

So, so, these are the two transfer functions and threshold values are there in input layer

and then output layer. Now, similarly the transfer function that we have considered here

for any case perceptron in this layer is denoted by this one and here we have considered

the log the tan sigma transfer function. So, for the sake of varieties we have disc[uss]- we

have considered different transfer functions in the different perceptrons with the different

threshold values in each layer.

So, this completes the description of the element network as a multilayer feed forward

neural network. So, now, once this architecture is clear then we will be able to see how

this network architecture can be trained. So, trained means there are many things are to

be learned. So, far training is concerned the first of all how many numbers of perceptron

should be there in the input layer that obviously, specified by the number of inputs of

course,  similarly  number of perceptrons in the output layer  it  is  also decided by the

output.

So, these two things are very simple, right it is, but so, for the learning is concerned how

many neurons are there should be in the hidden layer it also needs to be learned. So, the

n this m value needs to be a plan. So, this is a another learning parameter and then we

have considered the threshold valued in each perceptron in the input here. So, this values

also needs to be learned, then alpha j value for each perceptron also needs to be learned

and then here also alpha values  for each perceptron to be learned.  So, these are the

learning parameter therefore.

So, m to be learned theta i values for each perceptron alpha j values for each perceptron

alpha k values for each perceptron are to be learned. Another also the things to be learned

that we have considered here in our discussion that this is a transfer function, but it can

be other transfer function always as well. So, there many transfer function. So, it is also

needs to be learned which transfer function will be better so far the accurate output is

concerned. So, all  the transfer function that we have discussed assume that these are



transfer function, but here also system should learn or the transfer function that it should

be here. So, these are the different things to be learned.

So, these are the objective of learning. So, learning means we are fine I also forgot to

mention one thing another learning parameter is V and W. So, these are most important

metrics  or parameters  to be learn V, W. Now, in this  discussion it  is  not possible  to

discuss all the learning parameters, but they can be learned in the same way the any one

other parameter can be learned and for the simplicity in our discussion we will consider

only how this network architecture should be trained. So, that it can learn the V matrix

and W matrix for the application. So, we learn about how to how the network can be

trained so that this network can learn V matrix and W matrix and following the same

approach we can learn other network parameters.

So, so, this is the objective of the learning that we are going to discuss.
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Now, fine and for the sake of discussion we will consider these are notation that we will

follow so that we can understand the things completely. We can say any neuron in the

input layer as the i-th neuron i is one to l. Similarly, any neuron in the hidden layer we

denote it as j-th neuron and any neuron in the output layer we denote in the k-th neuron.
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And, similarly there is a weight associated from i-th neuron in the input layer to the j-th

neuron in the hidden layer, we denoted by a V matrix and the V matrix is like this. So,

this is the usual V matrix that we have already used it in the singular feed forward neural

network training.

So, it is basically v ij denote the weights from the i-th neuron to the i-th neuron in the

output layer to the i-th neuron in the hidden layer and their values of i will vary from one

to l and values of j will vary from m to m and this way it is an l cross m matrix. Now, so,

this is the matrix basically we have to learn it by means of training we should learn the

different elements here in this matrix.
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.

 Now, likewise we denote the w jk representing it is a weight from the j-th neuron to the

j-th neuron in the hidden layer to the k-th neuron in the output layer. Now, all the weights

that is there in this network can be represented by a matrix this is called the W matrix

and w jk, jk represents basically weight from the j-th neuron to the k-th neuron and it is

therefore, a matrix of m cross n size where m is a number of neuron in the hidden layer

and n is the number of neuron in the output layer. So, this matrix W also needs to be

learned and by means of training process we have to learn this matrix.
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Now, so far the training is concerned basically training here in the neural architecture

needs a number of computation we can systemize the computational in the three steps

method; first we have to compute the input layer, then hidden layer and output layer. So,

we  say  that  input  layer  computation,  hidden  layer  computation  and  output  layer

computation. Now, so, far in our computation is concerned competition is based on some

training set. So, here we denote the training set as T and T the training set consists of the

input data and then output data for any input I which is belong to T I has an associated O,

I O. So, it is basically I and O one sets, this sets is basically supervised training sets.

So, T is the training data here. So, given the training data right, we have to learn the

different network parameter in this case V and W matrix. Now, to learn it or as a process

of learning we have to learn we have to  compute the different  layers in each in the

network.
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And,  so  now,  let  us  see  first  the  input  layer  computation.  Now,  the  input  layer

computation can be discussed like this say suppose any input I I which is in T I, T I you

have discussed about is the input set and this a I consists of l number of inputs for each

neuron to the input layer. So, we can denoted I I 1, I 2 1, I 2 this  one, ok. So, this

basically is a one input that is there in the input set.

So, this is basically the one input which is belongs to this training set T I and the output

layer combination is prevail in this case this is because whatever because we have we



have considered the linear transformation. So, linear transformation means y equals to x.

So, so the whatever the value of x will be directly pass to the y. So, in this is why the

output layer combination is that if O I is basically the output instance at any time then

give then the it is input is I I 1 or in other words if I I 1 that mean if this is the input then

it is output is also O I it same because of linear transformation.

Now, all these things we can represent in terms of a matrix. So, all these right it can be

represent in a matrix like I 1 I, I 2 I and so on, so on. So, this is basically the matrix and

as these l number of inputs datas are there so, this is basically l cross n matrix; similarly,

I 1 also l cross n matrix. So, what you can say that so, this is the input layer combination;

that means, input to any perceptron in the input layer will be the output of that perceptron

in that layer and this the any neurons input and corresponding output can be represented

by means of this matrix formulation.  This matrix of size l cross n l cross 1 and this

matrix of size l cross 1.

So, this is the idea about the input layer computation.
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And, similarly we can say that if this is the output of a perceptron in the input layer then

that will work as a input to the hidden layer. Now, if we consider any j-th neuron in the

hidden layer then it is input can be considered as I j H. Now, this I j H can be expressed

by this of product. So, basically it is from the first neuron to the j-th this is the symmetric



the what is called the weight values and then it basically the output of the first neuron in

the input layer.

Similarly, the second neuron to the j-th and then output from the second neuron in the

input layer and this is a v ij the weight from the i-th to j-th and it is basically the output

of the j-th neuron in the input layer. So,  this  concept is there and this  basically  is a

summation of all the inputs with their weights it gives the input to any perceptron in the

hidden layer. So, I j H is basically input to the i-th perceptron in the hidden layer and this

basically the calculation of input to the hidden layer, ok.

And, now this expression this expression can be represented in the matrix form which is

represented here. Here it basically I H is basically all the inputs to the hidden layer it can

be represented V transpose matrix and O I matrix. So, O I basically output of the input

layer and V transpose matrix is a V matrix and it is transpose form. So, in other word, if I

H is basically m cross 1 matrix and V-th is the transpose V is a l cross m and it transpose

from m cross l matrix and O I 1 is a l cross matrix. So, whole the things or whole this

input layer computation can be expressed, in the form of a matrix representation. And,

what we are observing is that all the calculations for example, input to the input layer or

output of the input layer and input to the hidden layer is basically input layer calculation

and all these computation can be expressed in the form of a matrix as it is here.

So,  this  is  basically  matrix  representation  and then  matrix  operation  and then neural

network training and then it is describing the model is nothing, but a matrix model or

matrix formulation of the model.
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So, this give the input layer combination and then we will come to the hidden layer

combination.  Now,  we  know  exactly  what  is  the  input  to  any  perceptron  any  j-th

perceptron in the hidden layer now our task is to calculate what is the output of the j-th

neuron in the hidden layer we represent the output of j-th neuron hidden layer as this

form O j H and as you have discussed that the transfer function that it used is basically

log sigmoid and it has this form and these are the alpha H indicates that it is basically it

is alpha j better we can write that it is basically the threshold value of the j-th neuron in

the hidden layer and I j H if it is a input. So, it is basically e to the minus alpha I concept.

So, it is the output. So, this output is basically for the j-th neuron in the hidden layer.

Now, the way we have expressed the matrix representation so, this calculation or the

output combination also can be represented in the form of matrix and the matrix will

look like this.
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It is basically that matrix we can say that O H matrix is the O H matrix this means the

output  of  the  hidden  layer  and  output  of  the  hidden  layer  because  m  number  of

perceptrons are there. So, it is a matrix of size m cross n. So, it basically includes the

output for the first perceptron second perceptron and these the m-th perceptron. So, it

basically matrix that mean all the outputs of the perceptrons in the hidden layer can be

represented by this type of matrix. So, this is another matrix to compute the hidden layer.

Now, so, the hidden layer output is known, hidden layer input is known, input layer input

is known, input layer output is also known.
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Now, we are in a position to discuss about output layer computation. Now, in case of

output layer we know output of the hidden layer works as an input to the output layer.

Now, if there is any neutron say k-th neutron and we denote the I k O represents that it is

basically input to the k-th neuron at the output layer. So, is a input to the k-th neuron at

the output layer.

Now, this input is basically is a summation is a sum of the products of the weight matrix

corresponding to the output from all the perceptrons from the hidden layer. So, this can

be expressed this is basically output from the first layer in the hidden layer, output from

the second perceptron in the hidden layer and output from the m-th perceptron in the

hidden layer and is multiplied by this product is the weight matrix weight values from

the first neuron to the k-th neuron from the second neuron in the second layer to the k-th

neuron in the output here and so on, so on.

So, this way this basically is an expression is the input to the k-th neuron at the output

layer and there are n number of neuron. So, k will varies from 1 to n. So, this basically

computes the input to the output layer. Now, this expression can be expressed in the in in

terms of matrix representation which is here. So, I O denotes all the inputs at the output

layer and this can be expressed the transposition of weight matrix and multiplied by the

OH, O is basically output of the hidden layer, this output of the hidden layer we have

already learn how to get it. So, this way the matrix representation of the output layer,



input of input to the output layer can be obtained and we can represent it this matrix as

this is a n cross 1 matrix, this is n cross m because W is a n cross m matrix and this is an

m cross 1 matrix.

So, so, this basically the input computation at the output layer or is called the output

layer computation. Now, we will discuss about the output of the output layer.
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Now, the similarly the way the output of the input layer hidden layer we have calculated

in the same way we can express the output of the output layer. Now, we can see that we

have already mentioned that the transfer function that we have used they are in output

layer is basically they tan sigma transfer function which take this form. So, it basically

the output of any k-th neuron in the output layer so, this is the output of any k-th neuron

in the output layer and there are n number of neuron in the output layer so, k values

varies from 1 to n.
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Now, so, this expression is for a particular perceptron, now, as a whole for the entire

network at the output side also can be expressed and that too can be expressed using the

matrix  representation.  So, this  is  a  matrix  representation for the output  layer.,  output

layer here O denotes the all outputs that can be obtained from the output layer and this

basically this is the entry of the output of the first neuron in the output layer and is a

second neuron in the output layer and this is the nth nth neuron in the output layer.

So, the these things also can be represented by means of a matrix and here alpha O is

denotes that what is the threshold values. Now, here if we can for the simplicity we can

consider that only one values of alpha. So, alpha I is basically the threshold value in the

input layer for all the perceptron, for the simplicity we assume it. Similarly, alpha H we

do not the threshold values of all perceptrons in the hidden layer and alpha O denotes the

threshold values of all perceptrons in the output layer.

Now, this is a just simply an assumption that we considered same values of threshold

values for all neutrons neurons belongs to a particular layer, but in actual practice it is not

necessarily  the  same  we  can  consider  the  different  threshold  values  for  different

perceptrons  in  the  network,  but  it  will  increase  the complexity  it  will  demand more

calculation so, otherwise it is not the issue it is only the issue of computation time.

Now,  we  have  discussed  about  the  different  layer  computation  and  all  these  layer

computations will be used to train the network because this is the ok, is a mathematical



manipulation that  how we can represents a neural network mathematically. Now, we

have  just  now  discussed  that  how  the  entire  neural  network  can  be  represented

mathematically  and  that  mathematical  representation  in  the  form  of  a  matrix

representation. Now, in the next lecture will discuss about using these are the different

calculation how we can train the network. 

Now, for the training in multilayer feed forward neural network there are many training

procedures, but in this lesson will discuss about a particular which is most popular the

back-propagation algorithm. So, that we will be discuss in the next lecture slides.

Thank you.


