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Pareto-based approach to solve MOOPs (Contd.)

We are  discussing  NSGA 2 approach,  and the  NSGA 2 approach  followed as  some

method similar to the NSGA, and it is basically the first method. First step that is they

are in both common in a NSGA 2 are non-dominated sorting, front calculation based on

the non-dominate sorting or a procedure. Now today and then the next procedure that is

the here is different is basically the selection for the mating pool. And here in the NSGA

we follow the method of assigning fitness values followed by the sharing fitness values.

But in case of NSGA, the method that we follow for the selection is basically called the

crowdring crowded tournament selection.  So, in this lecture we shall learn about this

crowded a tournament  selection  method so,  crowded tournament  selection method in

NSGA 2.

(Refer Slide Time: 01:18)

Now as you know that crowded selection method is basically is crowded tournament

selection method is basically required in order to decide from the last front to select the

requisite number of solutions to fill this population of size F 1.



(Refer Slide Time: 01:44)

So, here if this is the last front that needs to be considered to fill this front, but if we

include all the solution belong to this for it will exhaust the total capacity, from there we

have to calculate only this amount of numbers to be included here so that the total size of

this solution will be equals to N. So now, how to select the correct solutions are there the

most preferred solution to this one, and this method is basically based on the crowded

tournament selection method.

Now  so,  these  are  crowed  tournament  selection  method  will  be  discussed  in  these

lectures.
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Now the crowded tournament selection method it is also called crowding sort procedure.

It basically considered 2 concepts. First is that the measurement of crowding distance,

and then another is called the crowding comparison operator. So, there is a one metric, if

xi and xj are given, then how to find the crowding distance. Or rather we can say for

every solution xi, how the crowding distance can be calculated. So, this is denoted as d,

and then if xi, and xj are the solution, then how we can say that which is the winner that

is  based  on the  crowding distance  measure  that  you have  because,  xi  has  it  is  own

crowding distance xj is on crowding distance.

Then selection is based on an operator, that is called the crowding distance operator that

can  select  the winner;  that  means,  is  compare  based  on this  operator  this  one.  Now

crowding distance di if we denote of a solution xi is in fact, is a measure of the search

space  around xi  which  is  not  occupied  by  any other  solution  in  the  population.  So,

physical meaning of this crowding distances like this one.
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If xi this is the one solution here, and then how many space it is there, by which the next

the neighbor is there so this is the crowding distance. Now if this is the solution xi, and

this  is  the crowding distance  for  the next  neighbor it  is  there,  then we can say that

crowding distance of this solution is more than the crowding distance of this solution.

Now, another physical meaning is that if the crowding distance is very large. This means

that this is a one solution, which is there in a less populated on region. On the other hand,

if the crowding distance is small, then we can say that this solution is belongs to one

solution, which is heavily the populated. So, is basically crowding distance says, that

whether this solution is in a crowded region, or this solution is in a crowded region or

both the solutions in a crowded region, then whose solution are in a heavily crowded

region than the others.

So,  this  is  the  meaning  of  this  crowding distance  concept  it  is  there.  And and then

crowding operator this one is basically to compare the 2 solution, so far, their crowding

distance is concerned. So, these are the 2 things are the here and we will discuss about

these 2 things here. Now let us first define the crowding comparison operator that just

now we have discussed by which the 2 solutions can be compared and based on this

comparison we can select the best solution here.

Now, let  us consider xi and xj are the 2 solutions, and they are the crowd crowding

distance is known to us also. Now so, crowding comparison operator is basically is a



operator which is defined here how this operator works for us. So, here the operator is

defined like this, if solution there are 2 conditions actually, if solution xi has a better

rank; that is, rank xi is better than rank xj; that means, xi in higher rank, I mean is a

better rank than xj.

Now, rank actually you can remember I told once that all the some solutions which are

the first part, they can be considered the higher rank, and then next solutions which are in

the next rank is the next rank and so on. So, xi is the first front and xj is the next front

then we can say that this one. So, here this is the one condition that is to be satisfied then

you can say that xi is the winner than the xj. On the other hand, there is another condition

if  they had the same rank, but solution xi has better  crowding solution then xj;  that

means, it has better crowding distance then xj then xi can be considered the winner than

the xj.

So, the 2 conditions are to be satisfied, and based on these things it will basically select

the selects the winner. So, the conditions again rank xi if it is rank xj and di is greater

than dj, then xi is the say operator. So, this is the idea about the crowding operator.

(Refer Slide Time: 07:19)

So, this means if xi, and this is the crowding operator xj is basically checked out of the xi

and xj; which has to be returned. So, either xi or xj so, based on this condition, this

operator is defined here. So, this is the concept that is there so far, the crowding sort is

concerned now, let us see how this concept is there.
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In our case, if we see in in the in our case; that means, we are to consider all the solutions

belongs to a particular front that is the last front. So, therefore, rank is not required the

first condition need not to be satisfied. Because all the solutions belong to this front have

the same rank. So, that is why the first condition is not need to be checked there only the

second  condition  needs  to  be  checked.  So,  second  condition  resolved  that  i,  when

basically  if  both  solution  belong  to  the  same  front,  but  the  solution  that  tie  can  be

resolved by means of calculation of their crowding distance. Or in other words, in NSGA

2 only the second condition is valid as all solutions belong to only one front.

(Refer Slide Time: 08:42)



Now, let us see how the crowding distance measure can be carried out, we have already

told you that crowding distance measure is basically the population density surrounding

a solution. But how we can measure this population density? NSGA 2 follow a cleaver

approach to do these things. So, according to this NSGA 2 crowding measure distance di

for a solution xi; that means, is the ith solution is an estimate of the size of the largest

cuboid enclosing the point xi, without including any other point in the population.

So, this is the definition actually. So, that is a largest cuboid enclosing the point xi, this is

important ; that means, if xi is given to us, and if we are able to find the largest cuboid

which surrounding the xi so that there is no any other point in that cube, then that cube

will give a measure to the crowding distance. So, this is the idea about the definition of

crowding distance and as it is there, I can illustrate the same concept with an example

here, let us follow.

(Refer Slide Time: 09:56)

So, first consider this example, and it is a case of 2 dimensional; that means, 2 objective

F 1 and F 2,  and for solution say x 2 we want to find the crowding distance.  Now

surrounding this 2 point, the 2 nearest point with respect to x 2 is this one say xi minus 1

and xi plus 1. These are the 2 nearest point, with respect to the solution point x 2. Now

then with x the 2 nearest points; that is, x 2 with respect to this we can find one what is

called the region it is there.



So, this region is basically either crowding region here; that means, surrounding this x 2

these are the basically area by which no other points are enclosed. So, the x 2 is the

crowding measure here, now the x 2 measures is basically the crowding measure is ok,

we can take the calculation of the square of course, area, but this this energy to propose

the  major  that  this  plus  this  is  the  measure  of  this  crowding  distance  it  is  also

alternatively, because if these 2 measures basically breadth and width measure in this

case.

Now so, this way if we know x 2, and these are the 2 solutions are there we will be able

to find these 2 distance and therefore, the crowding distance can be measured. So, this is

the one example where the crowding distance how it can be measured here, and another

example. So, this is another example here, 3 objectives are there. So, is a multi-objective

optimization problem with 3 objective function F 1 F 2 and F 3? And we are interested to

find the crowding distance for the solution xi. And suppose, xi plus 1 and xi minus 1 are

the 2 solutions, which are the nearest to xi, they are the near most 2 solutions.

Now, if we can find the 2 solutions, which are near most to this one, then in 3 dimension

unlike this 2 dimension we can find a cuboid. So, this is a cuboid and this one and then

the crowding distance of this thing is basically this is the total area of the cuboid. But

instead of calculation area of the cuboid, it will take the calculation of this and this are

the measure of the size of the cuboid. So, this will give the measure of the cuboid, and

then this can be given alternative measure or is basically the measure of the crowding

distance.

So, we have learned about how the crowding distance for any solution in a 2-dimensional

space can be calculated for any solution in 3-dimensional space can be calculated. Now

extending the same idea,  we will  be able  to calculate  the crowding distance  for any

solutions, but in a N dimensional space. Now we will give an idea or the formula that

that initiative others proposed it, how the crowding distance can be calculated will be

discussed.

So, anyway so, crowding distance can be calculated, if a solution is given knowing the

other solutions in the near dignity of the solutions.
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Then the crowding so, is basically the crowding distance and then once the. So, the idea

is that for all the solutions, which are belongs to a to the last non-dominated front for all

the  solution  belong  to  the  last  dominated  front.  We have  to  calculate  the  crowding

distance for all. So, this is the step that is required here.

(Refer Slide Time: 13:57)

Now, crowding distance calculation can be carried out in a little bit mathematical way,

that just I want to discuss it here. See suppose, given a set of a non-dominated front the

last non-dominant front that is here let this be F. And they are our objective F objective



function for each solution they are denoted as f 1 f 2 dot dot f M. So, for each solution

we have this objective vector F with in terms of m objective functions. And let the size of

the  F  be  this  one;  that  means,  the  number  of  solutions  which  belongs  to  the  non-

dominated front this be the i.

So, here basically the procedure is that for each xi in F set di equals to 0, initially the

crowding distance of all the solutions is 0. And then we will calculate for each solution xi

in F what is the crowding distance, we have to calculate it initialize 0, and then finally,

you have to calculate the crowding distance for all solutions. Now here is the procedure

for each objective fi in f, basically we will first sort all the set f, but with respect to the I

th objective vector and this be the sorted f.

(Refer Slide Time: 15:09)

So, it is that idea it is like this.

So, first with respect to f 1, f 1 objective function we are to sort all the solutions which

belongs to F and then the shortage solution will be termed as F 1. Similarly, with respect

to f 2 if we sort all the solution belongs to F and it will give F 2. So, this way if with

respect to f M, we can get the certain percent of sorry sort Fm. Now here we can see so

these are the sets is a sorted order, but is a sorted order with respect to one component.

This one sorted with respect to F 1, this one is sorted is F 2, and this one is sorted F 2,

Fm and so on.



So, here basically  a sorting techniques are to be followed by which all  the solutions

belongs to the set belongs to the set F can be sorted in terms of one objective function at

a time. So, these are called the sorted vectors. So, pictorially all the sorted vectors can be

shown like this, if you can see this figure here.

(Refer Slide Time: 16:46)

So,  these  are  the  sorted  vectors,  you  can  see  F  1  sorted  vector  with  respect  to  the

objective function F 1. So, here basically all the solutions, they are sorted in ascending

order, but with respect to F 1; that means, the solutions has the lowest value. So, for the F

1 is concern this is the next highest value, and it is the highest value of F 1 is concerned.

Now, again and this is the solution F 2 is respect to the second objective function; that

means, with respective second objective function, all the solutions are there which has

the lowest value of F 2, then this solution which has a next higher value and so on and

this  basically  the  solution  which  has  the  highest  value;  so,  for  the  objective  F  2  is

concerned. So, this way the F 1 the sorted vector F 2 and F M, and here with respect to F

M can be often.

Now, in this discussion we assume on concept is that here all the objective function are

to be minimized. So now, if it is not minimized the other if it is to a maximize, then we

will follow the descending order. So, if it is minimized, if it  is maximized, then it is

ascending order it is descending order. So, this procedure depending on, we can consider



that all objective functions are to be minimized one. So, if it is a minimize, then all these

are the ascending order of their objective function.

So, this way the sorted vector can be obtained. Once the sorted vector is obtained, then

we shall be able to calculate the crowding distance between or crowding distance of each

solutions easily. So, this method that is proposed in the NSGA 2 is like this.

(Refer Slide Time: 18:35)

So, the crowding distance dj for any j th solution can be obtained like this one using this

formula. This formula can be checked yourself, and you can find it here the fk max and

fk min are the 2 values. It means with respect to the k th objective function or is the

lower bound and is the upper bound. And this value is used to normalize all the solution,

because is a normalization is require so that all values of the dj will be in a same range.

So, this is for the normalization, and this formula can be verified yourself. And another

thing is that, the first solution and the last solution this is basically di the last solution,

because it is a boundary solution, they have crowding distance is infinite so, this is the

condition.

So, this way, we shall be able to calculate the crowding distance of all the solutions there.

Now once the crowding distance of all solutions are calculated, then the then we can play

the crowding sort procedure here ok.
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So,  here  we have  already you have  mentioned that  all  objective  functions  are  to  be

minimized  in  our  previous  discussion.  And  so,  far  the  complexity  of  the  crowding

distance  calculation  is  concerned,  because  it  is  a  sorting  method.  So,  it  is  a  sorting

complexity mn log 2 n where N is the size of the population. So, is the complexity is this

one. And fk MAX and fk MIN are the 2 limiting values, and then we divide the this

limiting a difference between the limiting values to normalize objective values ok.

(Refer Slide Time: 20:20)



So,  crowding  distant  calculation  once  it  is  done,  then  we  will  be  able  to  play  the

crowding tournament selection game.

So,  crowding  distance  selection  game  is  basically  it  is  like  this  we  can  follow  the

crowding comparison operator. Now here we ok. So, crowding operator can be applied to

the 2 solutions xi and xj; that means, we have to see this one. Now here xi crowding

operator xj, and xj xi will be termed as a winner if we see that, we are crowding distant

di is greater than dj. So, in this case this is a crowding operator. Here and you can see

again that all the solutions are get on the same rank, that is a you do not have to bother

about rank.

So,  here  basically  so,  for  the  crowding distance  based  tournament  is  concerned,  we

prefer those solutions, which are not in the crowded search space. This ensures a better

population diversity. So, basically di is greater than dj; that means, the solution xi is in

not in a crowded region. Now so, this basically in to ensure the population diversity it is

same concept that is where in NSGA, but NSGA follow. Then is count here instead of

needs count it basically consider crowding distance. So, this is the difference between

NSGA and NSGA 2 is here.

(Refer Slide Time: 21:48)

Now, NSGA 2 is an elitist approach. Why we said so? This is because, if you see the

non-dominated front, it basically when we match the 2 solutions the previous generation

and  the  next  solution,  and  from there  if  we  find  the  non-domination  front,  then  it



basically selects the all elite solutions first. So, that is why it is called the elitist approach.

Because, first front, second front, third front and the elitist fronts are selected first and

for the last front it is the lowest or what is elitist front from there we have to select using

the crowding tournament selection.

So, here this is why the concept it is there. And so, far the procedure the time complicity

is concerned. The total time complexity here is order of mn square compare to order of

mn cube there in NSGA concept. And it does not require any explicit sharing concept

that is therein can of in case of NSGA method. Rather, it uses a crowding tournament

selections with and complexity order of mn log in. Now so, the 2 time complexity order

of mn log in order of mn log in for the crowding tournaments and for this order of mn

square  for  the  non-dominated  sorting  procedure,  putting  together  putting  these  2

operations basically complexity the order of mn square only because this is the higher

bound than this one. So, it is basically taken this one.

On the other hand, in case of non-NSGA it is order of N mn cube. And, obviously, So, it

is a order of mn cube. And out of these 2 complexity, this is the time completely with the

lower a port than this one. So, that is why NSGA is the first method. So, it is a first

method, and it is an elitist method. So, this is the idea about the here, and accuracy it is

observe that, this algorithm gives better result compared to both the compared to any

pareto based approach that we know so far; that means, moga approach NPGA or NSGA

it gives better result and with the fewer competition compare to NSGA of course. And

obviously, if you consider time complexity, then it needs more time compared to moga

and NPGA however, but the complicity is better.

So, these are the different pareto based approach we have learnt. And what I want to say

in  the  summary  is  that,  out  of  the  different  approaches  to  solve  multi  objective

optimization problem, non pareto based approach needs a prior knowledge. Whereas,

pareto  based  approach  does  not  require  any  prior  knowledge.  So,  this  is  the  one

advantage that the pareto based approach is there. And another difference between the

non pareto and pareto that, non pareto gives only one solution. But all the pareto based

approach gives pareto optimal solution; that means, tradeoff solutions. And then are from

the tradeoff solutions, we have to decide one solution, and that solution require some

posterior knowledge. That mean it is depends on your decision that out of these solutions

which solution can be consider.



But in case of pareto based solutions  or pareto optimal  solutions,  we can select  any

solutions out of a large set of solutions that can be said that can satisfy your requirement.

So, this is the difference between the pareto based and non pareto based approach. And

as we told you the non pareto based approach it is applicable, if we see that only few are

tradeoff solutions are to be considered or it is there in the problem solving. 

On the other hand, we should apply pareto based if we see that there is a large number of

solutions are possible which are equally towards the optimum solution. So, in that case

we follow pareto based approach. Out of this non pareto and pareto based approach in

fact,  people  prefers  pareto  based  approach  because  of  it  is  accuracy  and  then

performance first. So, this is the technique that we have learned about multi objective

optimization problem solving using genetic algorithm.

So, our next topic in the next field will discuss about a neural network concept to solve

some computing problem in different application.

Thank you.


