
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 08
Rate Monotonic Algorithm

Welcome to this lecture. In this course, so far we have looked at scheduler’s task

schedulers.

(Refer Slide Time: 00:24)

And we said the task scheduling is possibly one of the most important activity of a real

time operating system and we started looked at some simple real time tasks schedulers

those are those goes by the name clock driven schedulers. So, those are used in very

simple applications where the processing power memory etcetera are very small the

operating system itself is only a small program takes very little memory and computing

power.

We looked at the table driven scheduler and spent couple of lectures on cyclic schedulers

because cyclic schedulers are an important category of schedulers used extensively and

then we are looking at the event driven schedulers the event driven schedulers are an

important category of schedulers used in larger applications where the number of tasks

are more and the operating system in the significant processing overhead and also

memory footprint.

We said if you remember in the previous lecture that there are large variety of event

driven schedulers, but then all of them are variants of 2 basic category of schedulers one

is the EDF earliest deadline first and the second is RMA rate monotonic algorithm the

EDF is the optimal scheduler it is a dynamic priority scheduler and we started looking at

the EDF and we were trying to find out its difficulties because EDF even though it is a

very good real time tasks scheduler it can schedule it can have successful feasible

schedule for tasks which no other schedulers can schedule its overhead is small, but then

it is not used in common applications.

The reason is are its short comings and you are looking at the short coming three major

short comings one is that if there a transient overload some task gets delayed may be

because its waiting for some signal may be it just went into a larger path the code may be

it went into a non-terminating loop whatever, but then if that happens even to a very non

critical task very routine task still the most critical task can be missed its deadline.

So, that is one major problem with this the second is runtime inefficiency the other

schedulers are much more efficient for example, the RMA based schedulers are much

more efficient let us see the source of inefficiency of EDF scheduler. So, if you

remember at every scheduling point the scheduler becomes active and then selects the

next task to run in the EDF algorithm it checks all the ready tasks find out, which has the

earliest deadline to do this it must have the tasks in some data structure lets first examine

if all the tasks are ready tasks are waiting in a queue. So, I need to traverse the queue and

find out which is the task having the earliest deadline.

Traversing a queue is order of in if n tasks are there then o n is the complexity of finding

the task of course, when a task gets generated inserting in the queue o one because it gets

inserted at the end of the queue o n at every scheduling point is actually inefficient we

should ideally have o one as the complexity because if the tasks are more and the

scheduling points occur very frequently every few micro seconds or so, then the runtime

overhead becomes significant.

Now let us see what are the other options for implementing the EDF scheduler one is a

priority queue if you can recollect what is a priority queue it is the one; it is a type of

queue where the highest priority task is available at the top of the queue. So, finding the

task having the shortest priority is o 1, but then what about inserting a task if you look

into the complexity of inserting into a priority queue find that it is log n. So, even though

it is a better structure than a singly linked list a linear queue, but still log n is not a very

desirable time complexity for a task or a scheduler.

Therefore we can say that EDF is not really very runtime efficient.

(Refer Slide Time: 07:16)

The most important set coming that is faced in a application real time application

development is poor resource sharing support in EDF based scheduler in a practical

application the real time tasks need to share resources; resources can be some data items

based in memory it can be open files etcetera.

So, these are called as a critical sections if we look at the solutions that exists for

resource among tasks in EDF and critical resources we are talking of then the solution is

extremely inefficient and this causes the tasks to miss their deadlines as we proceed in

couple of lectures, we will examine the issue of resource sharing we will see that for rate

monotonic based schedulers very good algorithms are available for resource sharing. But

for EDF resource sharing is a big problem, we do not have a satisfactory solution for that

and possibly that is one of the main reasons why EDF is not used in practical real

applications.

(Refer Slide Time: 09:01)

But then before concluding our discussion in EDF, let us look at one point that is we

have. So, far assumed that the for every task the period and deadline coincide the period

is equal to deadline, but in many situations not many, but then in some situations the

deadline and the period can be different for example, deadline can be less than the period

or rare cases deadline can be more than the period.

So, in these cases how do we check EDF schedulability one solution is to take the

minimum of p i d i. So, e by e i by minimum of p i d i that gives the utilization and see

that that is less than 1; this is a sufficient condition that is if this is satisfied then of

course, the tasks set is schedulable in EDF, but then it is not a necessary condition

because we can find that some sets is not meeting this criterion this is too stricter

criterion minimum of p i d i it doesnt meet the criterion. But then still it may be possible

to feasibly schedule this we will not go into details of that, but just to know that if p i is

not equal to d I, then we need to use e i by mean p i d i which is a sufficient

schedulability condition, but then there can be some cases where they do not need this

criterion, but still becomes schedulable.

(Refer Slide Time: 11:13)

There are some variations actually many variations of EDF one important variation is

called as a minimum laxity first in EDF we look at only the deadline how much deadline

is remaining. But then we do not consider how much execution time is required over the

deadline if the deadline is 100 micro seconds and the computation time required is 5

micro second compared to another task whose deadline is 100 micro second. But the

computation time required is 50 micro seconds then it may be better to give higher

priority to the task having more computation left over the same deadline.

That is the main idea here in the MLF. So, here the laxity is defined as the deadline

minus the time required to compute the task execution and this turns out to be a good

algorithm because we are considering the task that is most likely to fail first is assigned

the highest priority.

(Refer Slide Time: 12:41)

And it performs at least as good as the e d f, but then in some cases it can perform better

than EDF now we have concluded our discussion on EDF the earliest deadline first

algorithm that is the optimal scheduling algorithm now we will start ha discussing the

rate monotonic schedulers, these are I think the most important class of real time

schedulers even though these are not proficient than the EDF, but practical

implementation of these is much simpler and also more efficient and the set comings of

the EDF like resource sharing and so on. Become easy here in the rate monotonic

scheduler and therefore, this these schedulers are used extensively in many real time

applications.

(Refer Slide Time: 13:44)

The main idea in the rate monotonic scheduler is that the priority of a task is proportional

to its rate of arrival. Let me repeat that here the priority is statically allocated by the

programmer or the designer and the priority that is assigned to a task should be

proportional to the rate at which the task arrives or the proportional to its frequency if a

task the period is 2 millisecond. It should definitely have higher priority compared to a

task whose period is 10 millisecond.

So, the higher the frequency or lower the period of a task the higher should be its priority

that is the basic premise or the basic algorithm for this scheduler. So, if the frequency or

the rate of arrival or whatever we give name to this if we arrange the tasks in this order

then the priority should be increasing in order of their frequency or decreasing in terms

of their period. So, the priority is increasing function of the task arrival rate.

(Refer Slide Time: 15:30)

Just to give an example, look at the task one its repeating frequently rate of arrival is

very high compared to the task 2 rate of arrival is lower and therefore, task one has

higher priority and task 2 has lower priority and the essence of this scheduler is that the

higher priority task will pre-empt any lower priority task and start running on its arrival.

So, let us look at this actual execution whether that is happening a time 0; both task 1 and

task 2 instance are ready, but then task one has higher priority and therefore, this instance

starts running the first 2 instance has to wait and then as soon as the task one instances

completes execution then the task 2 instance starts running and then the next instance of

task one arrives it pre-empts the task 2 starts running and then as it completes the task 2

again become active and so on. So, as long as there is high priority task the lower priority

task cannot run and it is the higher priority task that runs that is the main concept in rate

monotonic scheduling.

(Refer Slide Time: 17:20)

One important result is that among all static priority scheduling algorithms RMA the rate

monotonic algorithm is the optimal algorithm. So, if RMA cannot schedule a set of

periodic tasks no other static priority scheduling algorithms can, but on the other hand

any task set that is scheduled by any static priority tasks scheduler can also be run under

RMA is a very good static priority algorithm.

Now, let us spend some time on the results that are available on the schedulability

analysis. So, that is given a task set can we say that it can be feasibly scheduled on a rate

monotonic scheduler. So, those results are typically given as utilization bounds what is

the utilization. So, the tasks set or the processor and based on that we can conclude

whether it can run feasibly on a processor under the RMA scheduler.

(Refer Slide Time: 18:53)

The first result available since long time since 1971, I think is called as the utilization

bound one this s the basic result. So, this is available since long time that the utilization

is less than 1 obvious because utilization of a processor cannot be one and this is natural

that the sigma e i by p i should be less than 1 and this is a very basic condition called as

the utilization bound one these are necessary condition, but then a tasks set meets this e i

by p i sigma e i by p i is less than 1 where e is the execution time and p is the period we

need to check further conditions just because tasks set has met this condition does not

meet mean that the task set is schedulable.

But if you remember in the EDF schedulers this was both the necessary and the sufficient

condition the same expression sigma e i by p i less than equal to one was both necessary

and sufficient condition for the EDF schedulers, but here it is just the necessary condition

you need to first check whether e i by p i sigma is less than 1, then we can look for other

utilization conditions otherwise even this condition is not met; obviously, it will not be

schedulable under the rate monotonic algorithm.

(Refer Slide Time: 20:47)

The second result is again a utilization bound available for long time nineteen 70 one Liu

and Layland proposed in a landmark paper that the utilization bound should be less than

n into 2 to the power 1 by n minus 1 for a tasks set to be schedulable. So, if there are 10

tasks. So, 10 into 2 to the power 1 by 10 minus 1 the utilization sum of utilization of due

to the tasks should be less than that of course, you can check that it is always less than 1

because even if n is equal to infinite. So, infinite into 2 to the power 1 by infinity minus

1. So, that is a indeterminate form, but if we use the l hospitals rule we will find that it is

0.6. We will come to that.

Let us see how the utilization bound varies with number of tasks if n is equal to 1, then it

becomes 1 into 2 to the power 1 minus 1 which is 100 percent. So, if only one task is

there, then even if it has 100 percent utilization of the processor, still it can be

schedulable under the rate monotonic algorithm, but what if there are 2 tasks it becomes

2 into 2 to the power 1 by 2 that is square root f 2 minus 1 and square; square root of 2 is

1.41 minus 1 is 0.41 into 2 becomes 0.82. So, from point sorry from one, it becomes 0.82

with 2 tasks for three tasks it further reduces and so on, but finally, it saturates at some

value; let us find out what is this value because according to this expression it has n

increases the number of tasks increases the utilization at which the task set is schedulable

decreases.

(Refer Slide Time: 23:38)

So, this is the behaviour if you really take number of tasks 1, 2, 3, 4, 5 etcetera we will

see that by the time, there are 10 tasks it almost settles in this 0.7. So, 0.7 or 70 percent

utilization if a tasks set has more than 0.7 or 70 percent utilization we can safely assume

that it is schedulable. So, if sorry; I need to re state what is said that if the utilization is

less than this if the utilization is less than 70 percent anywhere in this region all this the

tasks that are utilization is in this region that is less than 70 percent this is upper bound of

utilization actually. So, as long as we find that a task set the utilization is less than 70

percent, we can conclude that it can be feasibly scheduled by a rate monotonic scheduler.

(Refer Slide Time: 25:02)

As given by this Liu and Layland bound, the maximum utilization at which the tasks

becomes schedulable falls as the number of tasks increases and for very large number of

tasks it settles at around 0.7 to be precise it is 0.692 and how do we get this 0.692, it is

based on the solving the indeterminate form infinity to the power infinity into 0

indeterminate expression applying the l hospitals rule to this indeterminate expression we

get log 2 which is 69 percent 69.2 percent.

The main thing to note here is that as long as the task set the utilization is 69.2 percent

we can safely say that the task set is schedulable under Liu Layland bound, but if it is not

schedulable it its utilization is more than 69.2, then we have to check how many tasks if

the task is let us say 2, 3, 4, etcetera, then we need to compute this expression n into 2 to

the power 1 by n minus 1 as I was mentioning that for 2 tasks even up to 82 percent

utilization the tasks set can be feasibly scheduled by the rate monotonic scheduler.

Because the rate monotonic scheduler is important class of scheduler used extensively in

many real time applications and also supported by almost every commercial real time

operating system, we are just trying to study this scheduling algorithm slightly more

carefully and the next lecture we will continue from this point we will conclude now for

this lecture.

Thank you very much.

