
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 03
Cyclic Executives

Welcome everybody. So, far we had looked at some very basic issues in real time

operating systems and we had seen that tasks scheduling is one of the major issues with

real time operating system because the application deadlines are made with a help of a

suitable tasks scheduler. So, now, we will start looking at some of the schedulers that are

being used we will start with a simplest scheduler. It goes by the name cyclic executives.

(Refer Slide Time: 00:59)

The cyclic executives are the simplest real time operating systems these are run on very

simple embedded applications where there is a severe constraint and the processor

capabilities may be a 4 bit or 8 bit processor and the memory is very very less. So, in this

situation a full pledged operating system is difficult to use, the tasks are simple here and

periodic in nature and this real time cyclic executives are basically very small programs.

Let us look at the basic structure of a cyclic executive.

So, here initially to start with the system is started with a system initialization where

various parameters are set and then there is a periodic timer which gives timer interrupt

and it is a cyclic executive which starts a call to a program or executes a program where

initially there is a data input, application processing and then data output and then it

keeps on waiting until the next period comes. So, this is the simplest real time operating

system it is basically a small program may be just a few dozens of line. And here as you

can see that just to take an example of how it works is the data input let us say that we

have a temperature controller.

In the temperature controller initially let us say the temperature has to be read from the

sensor. So, that is the data input and then we need to check that is it below a threshold,

higher than a threshold, is it abnormal etcetera and then based on that we possibly want

to show the current temperature reading on a display. So, that is the data output. And then

we wait for the next interrupt and the cyclic executive continues looping here infinitely

each time waiting for the interrupt doing some simple processing. So, this is the simplest

real time operating system run on the most elementary embedded systems.

(Refer Slide Time: 03:50)

One thing to note here in that, in this cyclic executives there are no processors it

basically involves running program. A program initially samples some sensors then does

some processing and then calls some display and here this program is executed number

of times and each time there is a interrupt this program is run.

(Refer Slide Time: 04:31)

So, now let us look at more examples of operating systems which are sophisticated

compared to the simple cyclic executive. So, all these schedulers that we are looking at

are at the simplest end of the real time operating systems and these are called the clock

driven schedulers. The ones that are much more sophisticated are the event driven

schedulers.

So, we heard in the last discussion seen that there are two broad categories of real time

task schedulers one is the clock driven schedulers the other one is the event driven

schedulers. So, now, we are just mentioning that the simplest end of the real time

operating systems we have the clock driven schedulers starting with simple cyclic

executives. Now let us look at slightly more sophisticated clock driven schedulers.

So, all these clock driven schedulers the clock interrupt comes at regular intervals on the

rising edge of the clock, the clock interrupts come and as soon as the clock interrupt

comes the scheduler becomes active. So, these points at which the clock interrupts come

these are called as the scheduling points. And in our last discussion we had mentioned

that the instance at which the scheduler becomes active and checks what to do next are

called as scheduling points and here the scheduling points are defined by a clock.

(Refer Slide Time: 06:27)

So, some of the important clock driven schedulers are the basic time driven schedulers

which is called basic table driven scheduler which is also called as the timer driven

scheduler and other is a cyclic scheduler. And even to think of it a simple round robin

scheduling where based on clock interrupt the different tasks are run in a round robin

fashion is also example of a clock driven scheduler, but we are not going to discuss about

that that is used in traditional operating systems.

But as far as the real time operating systems are concerned we are now looking at the

simple end of the operating systems the simplest operating systems used in small

embedded applications looked at the cyclic executives now let us look at more

sophisticated clock driven scheduler, first we will look at the table driven scheduler and

then we will look at the cyclic scheduler.

(Refer Slide Time: 07:37)

These clock driven schedulers are also called as offline schedulers or static schedulers

because the tasks set to be handled is known beforehand, it cannot handle sporadic

aperiodic tasks only the periodic tasks which are known beforehand whose period is

known these are handled execution time and periods of course, these might start at

different phases we had seen the concept of phase of a task.

So, these tasks may start with different phases, but then that is handled in by the clock

driven scheduler the different phases But periodic and aperiodic tasks are difficult to

handle and even the aperiodic tasks can be handled which do not have deadline and after

completing the real time task the lax time that is available can be used for handling

aperiodic tasks, but sporadic tasks cannot be handled by the clock driven schedulers.

So, first let us look at the table driven scheduler and then we will look at the cyclic

scheduler these are used extensively in embedded applications.

(Refer Slide Time: 09:03)

As we mentioned that, these are used in low cost embedded applications having very less

processing power and very small memory which cannot host full blown, full pledged

operating systems.

So, the advantage of these are, these take very small code space very little storage the

code size is small and even the temporary storage requirement is very small. And these

are very small programs run for a few microseconds just few lines of code and incur very

less runtime overhead. When the processing power is small if you want to run a

sophisticated operating system then the overhead of the operating system will be so

much that there will hardly any time left for running the real time tasks.

But then you will these have the advantage of running efficiently and with less space on

a embedded application, but then these have their set comings which we must be aware

of. The important set comings of these are that these are difficult to accommodate

aperiodic and sporadic task. And now let us look at the table driven scheduler.

(Refer Slide Time: 10:29)

In the basic table driven scheduler we have the operating system stores a table in the

memory this table basically contains only two parameters in the simplest form that what

are the tasks and what are the time for which it will run. The tasks may not be real tasks

actually whenever you are calling tasks it may be just invoking or running certain

programs because handling tasks require sophistication and the part operating system.

The task table creating task a tasks state and so on as we know from our knowledge from

a basic operating system task handling requires lot of sophistication on the part of a

operating system and we are now discussing the simplest real time operating system and

here even though we use the term tasks, but then these may be just running a program is

may not be task in the true sense of a task in a operating system. So, here in the basic

table driven scheduler we have the different tasks and their maximum runtime and then

we have a periodic interrupt from a timer and as the timer interrupt comes the timer

handler routine is invoked.

The timer handler routine keeps track of which is the task that is running now and that is

given by the entry. So, it just looks into the schedule table and finds out which task to run

and just finds out the task some parameters of the task which tell how to execute name of

the program and so on name of the executable which is to be executed. And then the

entry is augmented to point to the next entry in the table and it is mode of the schedule

table size because it just keeps on executing that.

So, the next time is given by the table entry time that get time when the current time plus

the time that is required by the task. So, here the timer is set for the next time and that is

the time that the task takes. So, from the current time the task is started executing. So,

this is the one to start execution of the current task and the timer is set for the maximum

duration of the task. And then as the timer expires the timer handler is invoked and the

next task is taken out from the table and the pointer to the table is incremented, the entry

that is the next task to be taken is incremented and then the time is set for the timer and

the task is taken up for execution and so on.

So, here as you can see in a basic table driven scheduler we have a simple data structure

that is stored in the memory and their code is small small and it just keeps on executing

this schedule. So, this is also not a sophisticated operating system used for simple

applications, but slightly more sophisticated than the simplest cyclic executives.

(Refer Slide Time: 14:59)

So, here is an example of a schedule table. These are the tasks or the programs to run and

maximum execution time is mentioned in milliseconds and the timer is set, and just

observe here that the tasks are typically the time is in milliseconds. So, the scheduler

overhead must be much smaller than the task execution time if the task execution time is

ninety milliseconds and the scheduler itself takes 100 millisecond then it is not a good

idea. So, here the cyclic schedulers are very efficient run in just a millisecond or so, and

then they just set the timer access the table and then they start the execution.

(Refer Slide Time: 16:04)

But one thing that we must notice here is that in a table driven scheduler we need to set

the timer a large number of times and setting a timer is actually is rather expensive task

compared to a time it takes for running a task and also the scheduler overhead, a major

component of that in setting the timer the other things like incrementing the entry count

pointer etcetera these do not take much time large amount of time is taken in stetting the

timer. So, this overhead is significant.

And the next scheduler that we are going to look at is bit more sophisticated than a

simple table driven scheduler. But one important advantage of the cyclic scheduler is that

you do not have to set a timer again and again timer is set only once and the overhead

due to setting timer is largely overcome in a cyclic scheduler let us look at the cyclic

scheduler.

(Refer Slide Time: 17:27)

The cyclic schedulers are very popular used in embedded applications. These are also for

meant for simple applications where there is not enough memory and processing power

to run a full blown event driven. Real time operating system for example, a micro kernel

real time operating system which will see later they take several even a micro kernel

operating system may take several kilobytes of memory and requires running several

thousands of lines of code each time a scheduling point occurs. But here the cyclic

scheduler is very simple it requires running only few lines of code each time a new task

is to be taken up for scheduling.

(Refer Slide Time: 18:32)

So, let us look at the cyclic scheduler. So, here again let me just mention that even

though we are saying tasks, but these may not be real tasks because these are used in

simple real time operating system. Here we do not have capability to manage tasks these

are actually simple programs that are stored and the scheduler just starts executing these

programs these are not tasks in the actual sense of the task as used in the operating

system literature, but that for uniformity of treatment occurs different schedulers we are

using the term task, but we must remember these are not tasks in the real sense.

So, here if we have n periodic tasks and each task requires running at different period.

So, it seems that in the simple cyclic executive there was only one period, but here there

are multiple periods. So, which are you called as multi rate operating system. In multi

rate we have multiple tasks which require running at different periods some may be

requiring every 100 millisecond some may be 500 millisecond some may be 2000

millisecond etcetera. So, the schedule here is stored in a table as in the case of other

cyclic scheduler that the table driven scheduler which is repeated forever, but we will see

that it overcomes setting a timer again and again.

So, we have n periodic tasks then let me ask this question that to repeat the schedule

what should be the period of repetition. Let me rephrase that if we want to develop a

schedule for this n periodic tasks each task requiring running at different time interval

some may be 100 some may be 250 some may be 300 millisecond etcetera. So, what is

the maximum length for which you need to create the schedule and store it in a table and

then we keep on repeating it forever.

So, the answer to that is LCM. So, we take all the periods and then compute the least

common multiple. So, if we have 100 300 and let us say 400 then we need to store the

period the schedule for a period of 1200 millisecond. So, 100, 200 and, sorry 100, 300

and 400 the LCM is 1200 and therefore, we need to maintain the schedule for 1200

millisecond and then keep on repeating that.

(Refer Slide Time: 22:00)

So, this 1200 millisecond or the maximum period for which we need to maintain the

schedule is called as a major cycle. So, after every major cycle we repeat the schedule.

But if the major cycle is divided into many minor cycles the minor cycles are also called

as frames.

So, as you can see these lines here, these are basically clock interrupts and these define

the frames this is the periodic timer. So, it have needs to be set only once and then keeps

on giving interrupts that these interval defining the frames. And to each frame a task is

assigned and that is stored in a table and these points at which the frames start the frame

boundaries, these are the scheduling points, the cyclic scheduler becomes active at this

scheduling points and then decides which task to run and then the table is stored for one

major cycle and then the task execution is repeated.

So, the scheduling points define the frames the beginning of the frames and these are set

by a periodic timer which keeps on giving interrupts at regular intervals.

(Refer Slide Time: 24:03)

And each time there is interrupt in the periodic timer, the cyclic scheduler is activated, it

starts running and then consults schedule table finds the next task to run and then after it

completes it may idol for some time until the next interrupt from the periodic timer

comes.

So, one important thing to notice is that compared to a table driven scheduler where the

timer was set again and again requiring much overhead here that is overcome. The

periodic timer is start only once during the initialization of the running of the system.

Now, the important thing that we must understand is that how is the frame time set for a

given task set and how are task assigned to frames. So, the task instances are jobs are

assigned to specific frames and these tasks have different periods. So, may be that in one

major cycle or a hyper period major cycle is also called as hyper period may be in one

hyper period some task instances that is jobs there are multiple times some jobs run only

once etcetera.

So, as far as the cyclic schedulers are concerned one important question to answer is that

how to fix the frame duration and how to assign tasks to the frames.

(Refer Slide Time: 26:03)

But as we take examples and explain the methodology we will find that it may be

possible that with a given set of tasks and task periods we may not be able to find a

frame size and assign tasks to frames. So, then we need to divide some tasks into smaller

jobs or job slices and then retry the methodology. So, compared to the simple cyclic

executive and the table driven scheduler here for the system programmer who is trying to

run a set of real time tasks on a cyclic scheduler the development of the schedule is non-

trivial.

We will examine what is involved in setting up a schedule in fixing the frame time what

are the factors to be considered and given a task set how does one go about doing it will

do a number of examples. And we will also request you to try out few examples on your

own so that you understand the integrity of developing a schedule in a simple cyclic

scheduler, so that we will continue it next lecture, now we will stop.

Thank you.

