
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 20
Unix as a Real - Time Operating Systems

Welcome to this lecture, in the last lecture we had seen some of the main requirements

for a real time operating system, and then we are trying to understand why the traditional

operating systems do not support those features, and what needs to be done to support

those features. And with this intension we are trying to dissect the Unix operating system

and find why it does certain things and how it can be improved.

(Refer Slide Time: 00:57)

Let us look at using Unix as a real time operating systems. For all the features that we

discussed in the last lecture that a real time operating system should needs to support

these are not satisfactorily supported by Unix, but then there are two issues that are the

major obstacles in using Unix in a hard real time application. The first is a

nonpreemptable kernel; when the Unix code is being executed that is the kernel code is

being executed then all interrupts are disabled and the second issue is the dynamic

priority levels the Unix operating system keeps on shifting the priority level of a task at

every time slice.

 Now let us try to examine why it does this first of all, why does it disable all interrupts

when executing kernel routines and also why does it have to keep on shifting the priority

of a task, because in this situation it becomes difficult to run a real time scheduler like

rate monotonic scheduler, because the scheduler works on the assumption that the

programmer assigned a priorities do not change.

(Refer Slide Time: 02:31)

First let us look at the Nonpreemptable Kernel. A preemptable kernel is also called as

reentrant kernel that is one a once a interrupt occurs then the kernel routine starts it stops

after the interrupt and then again after sometime it continues from that same place that is

a reentrant kernel that can be interrupted, but then the Unix is a non reentrant or a non

preemptable kernel. To achieve this all interrupts are disabled so that the kernel cannot

be preempted and it runs all the code that needs to be done, but then you will have

question that why is it not non, why it is not reentrant can it be interrupted some other

code runs and then starts running the kernel code where it left. The answer is no because

that will destroy the integrity of the kernel data structures, the developers of the Unix to

make the operating system efficient did not use kernel level locks.

So, if a data structure spot of the operating system that is modified half way, and then

there is a preemption and some other part the operating system runs, and then modifies

this data inconsistent data it reads modifies then it will lead to an inconsistent system can

crash the system. But then to make the problem more severe the user tasks can also run

in kernel mode will see this issue. But let us just understand this point that the traditional

operating system such as windows, Unix etcetera the kernel is non preemptable.

The main reason is that it is an efficient way to preserve the integrity of the kernel data

structure of course, we are talking a Unix 5 and then the later versions of Unix, and the

windows, and the Linux they did make the kernel preemptable. Please note that we are

discussing here the Unix system 5 as it is, but later developments because this was a big

handicap having a non preemptable kernel, and the main reason is that there is no kernel

level locks were used and therefore, disabling interrupts was a efficient way to preserve

the integrity of the kernel data structure, but this is a big handicap and therefore, later

versions of the windows and the Unix they did make the kernel preemptable through use

of kernel level locks.

(Refer Slide Time: 06:07)

But if the kernel is non preemptable then it can cause deadline misses because the tasks

preemption time becomes the time spent in the kernel mode plus con context switch

time. And the time spent in kernel mode can be of the order of a second in the worst case

because typically the context switch time is set as one second and the kernel routine can

run out to a second and if a task high priority task is prevented from running for one

second then definitely it will miss deadline, because typical deadlines are of are of

hundreds of micro seconds.

(Refer Slide Time: 06:58)

To make the matter worse even a user program can execute in kernel mode, when a user

program makes a system call, it runs in kernel mode generates a software interrupt

changes the mode to kernel mode and therefore, even when a user program is running

and makes a system call, it becomes non preemptable. The original Unix developer

wanted a efficient of operating system and they did not visualise use of Unix in real time

and multi-processor applications.

(Refer Slide Time: 07:41)

Now, let us look at the second issue which is the dynamic priority levels. If we look at

the Unix scheduler it uses a multilevel feedback queue, it divides the tasks into several

priority ranges and for each range it maintains a se separate queue the different priority

ranges are the user levels.

So, there are n user levels may be 256 user levels, then kernel processes are higher

priority, then the user processes. The user processes cannot really migrate to kernel level

and there are several other bands of priority, the files, buffer, disk I O and the swapper is

the highest priority in the Unix operating system. And the system by default uses a one

second time slice and the tasks after the complete their time slice is using the task once

the complete a time slice the priorities are recomputed.

(Refer Slide Time: 09:00)

If you look at the traditional operating system book, you will find that the priority of a

real of a Unix tasks at its j th times slice is computed at its base priority a nice value and

the CPU uses time its a history of CPU uses time. The history of CPU uses time is given

in forms of a in the form of a recurrence relation, the CPU just time met j is half of

utilization in the j minus 1, 50 percent weight has to how much utilization of the CPU

occurred in the previous time slice and the rest have is the history of CPU uses previous

to the j minus 1 instant. The priority T i j is the priority of the task Ti at the j th instant of

uses time slice. CPU Ti, j is the history of CPU uses a geometrically decreasing weights

for the CPU just and U Ti, j is the CPU utilization at the j th instance base Ti,j is a value

used by the operating system to separate different tasks in priority bands and nice Ti,j is

set by the programmer and as indicated by the name nice.

A programmer can only reduce the priority of these task, cannot really increase the

priority.

(Refer Slide Time: 11:00)

Now, let us look at this term CPU Ti, j CPU Ti, j is given in the form of a recurrence that

is CPU Ti, j minus 1 half of the weight is given to the history of CPU uses over instance j

minus 1 and earlier. And half the weight has come from the last time slice that it obtained

how much it has used CPU. If we unfold this recurrence we see a geometrically

decreasing weightage to the utilization over the different time instances. The last time

instance is given 50 percent, the in time slice before that 25 percent, twelve and half

percent and so on. So, this is a geometrically reduced weightage for past CPU utilization

history, but then you might be wondering that why does it have to do so.

(Refer Slide Time: 12:15)

Before we answer that let us look at another thing is. The base priorities the entire

priority band is developed is split into different priority bands swapper block I O file

manipulation character I O kernel process, and the lowest are the user processes and the

user processes cannot migrate to other priority levels and also a task at a certain priority

level cannot cross its band.

(Refer Slide Time: 12:54)

The central idea here is that the I O is a bottle neck, CPU executes at high speed, the I O

text time and therefore, if a task needs to do its I O, then it priority must be high

otherwise the response time will be low. The I O channels need to be kept busy as

possible if a task is doing its I O, its in the I O phase it priority should be enhanced.

So, that all the I O requests are raised and the I O channel is kept busy, and that is the

reason why I O bound tasks the priority is made higher and higher whereas, CPU bound

tasks the priority is made lower and lower by use of the priority scheduling formula sorry

the priority computation formula which we just looked at to increase the average

throughput, the priority of the I O internship tasks need to be raised and therefore the

utilization of the CPU in the previous instance is computed, and if the utilization is low

that indicates that it is doing I O, then the priority of the task increases. Remember that in

Unix the lower is the priority value, the higher is the priority and therefore, the utilization

is slow the priority increases.

(Refer Slide Time: 14:43)

The I O bound processes gravitate to higher and higher priorities, but if we are trying to

use such a operating system in real time situation, and the critical task is doing its

processing using CPU heavily, then its priority will keep on decreasing and it can miss

deadline and this becomes unacceptable in hard real time applications. So, we just saw

two major problems of Unix: non preemptable kernel and dynamic priority levels.

(Refer Slide Time: 15:19)

So, the Unix with its dynamic priority level and its non preemptable kernel can only be

used in soft real time applications, its not suitable for hard real time applications where

the deadline is the order of milli or micro seconds.

(Refer Slide Time: 15:41)

If we recapture the main deficiencies of Unix 5 task preemption time of the order of a

second, dynamic recomputation priorities, resource sharing protocols are not supported.

(Refer Slide Time: 15:56)

Inefficient interrupt processing unsatisfactory support of device interfacing like you

heard a new sensor, you want to incorporate a new sensor or a actuate a device and then

you need to recompile the operating system stop all tasks shutdown the system etcetera

that is not acceptable in a safety critical hard real time situation, you should be able to do

it when the system is operational. Support for timers is unsatisfactory and lack of real

time file support, these are main deficiencies the Unix 5if we want to use it for real time

applications.

(Refer Slide Time: 16:49)

Now, let us look at one last issue before we conclude this course is PSIX. If we look at

the origin of posix, it had to arise because Unix once it was developed by A T and T it

gave it free to many recipients who ever want the Unix code was distributed by AT and T

because AT and T was after a telecom company and then that time that point of time, it

dint have interest in developing operating system, and those who received it they

extended in various ways IBM into AIX HP into HP UX sun into Solaris the digital

corporation into ultrix and so on. Even though the Unix code was developed at a t and t it

was extended in various ways by different vendors and the result is that Unix code

became incomputable.

If you run a application you write a application on one platform, it will not run on

another platform.

(Refer Slide Time: 18:06)

Because the syntax and the service semantics differed, different Unix was offered

different services.

(Refer Slide Time: 18:17)

So, you develop code on one version do not work on another version. To make the code

compatible at the source code level, the posix is attempted stands for portable operating

system you might wonder that it comes to po p o s, but what about ix the ix was simply

suffix to pos the portable operating system to make it look like Unix standard. But then it

becomes so popular, that if the non-Unix operating system also become compatible to the

posix and therefore, the posix has been a huge success the major concern for posix is

portability of applications written in different operating systems. Now posix is widely

accepted even non Unix operating systems use the posix standard.

(Refer Slide Time: 19:18)

The posix has been accepted as a international standard the I triple E P1003 the ISO

standard 9943 etcetera they recognize posix is a standard.

(Refer Slide Time: 19:36)

If we look at the posix the standard document, will find that it defines only what should

be the operating system calls or the interfaces to the operating system and what should

happen once calls are made that is called as the semantics of the call. But it does not tell

how the operating system calls are to be implemented, it just says that what parameters it

needs to take what should be nom name of the calls and what it should achieve, but how

exactly to be written it does not tell about that.

(Refer Slide Time: 20:12)

If we look at the posix there are several volumes of documents one is posix one which

deals with system interface, that is what are the system routines and what are their

parameters and the semantics what it does. Posix 2 on the shells and the utilities; posix 3

how you can test whether operating system is posix compliant, and fourth document

deals with real time extensions the posix RT.

(Refer Slide Time: 20:41)

Now, let us look at the real time posix, it requires an operating system to support certain

features then only it will become RT posix complaint. The first one of course, is

preemptive priority based scheduling and it defines some performance metrics who is the

operating system must satisfy, that is the worst case bound on the execution time various

system calls.

(Refer Slide Time: 21:15)

It requires support for static priorities, we had seen that the traditional operating system

did not support static priorities, but now many of the traditional operating systems also

support static priorities. It requires that at least 32 priority levels must be supported, both

absolute and relative timers must be supported nanosleep function to provide high

precision timers.

(Refer Slide Time: 21:47)

In the virtual memory M lock that is lock a page, M lock all to lock the entire address

space, memory unlock that is to unlock a page and so on must be supported.

(Refer Slide Time: 22:16)

Multi-threading support real time file system support for supporting pre allocated and

contiguous files must be supported. So, we just right now saw some issues if we want to

use the traditional operating systems in real time applications we looked at Unix and then

we looked at what problems may occur if Unix is used as a real time operating system

and then we looked at a standard the posix real time standard, which all real time

operating system must support, we looked at major requirements of the standard one of

the stan requirement is static priority levels. 32 priority levels the scheduler should be

implementable using preemptable priority based scheduling.

We are almost at the end of the course, now let us do a few practice questions before we

complete the course. This is already we have discussed, but then just to check whether

you have really followed the course. One of the crucial issue that arises when tasks share

resources and we do not have adequate support for resource sharing is a priority

inversion problem. What do you understand by the priority inversion problem, how does

it arise and what are the solutions of this problem. Please go through the lecture material

and try to answer this questions that what is the priority inversion the unbounded priority

inversion and solution to this problem.

 Now let us move to the next question when several tasks share a set of critical resources

is it possible to avoid priority inversion all together can we really make priority inversion

zero number of priority inversion zero, when we have tasks that share resources by using

any protocol, any resource sharing protocol may be priority ceiling protocol may be

highest locker or the simple inheritance based protocol the answer to this question is no

because if a low priority task is holding the resource, then the high priority task has to

wait and therefore, at least one priority inversion must occur and it is not possible

whatever be the priority whatever may be the resource sharing protocol that we use, it is

not possible to avoid prior priority inversions all together.

(Refer Slide Time: 25:38)

Let us look at further questions before we conclude this course you can ask specific

questions for example, what do you mean by inheritance related inversion when using a

priority inheritance scheme may be a priority ceiling protocol, what do you understand

by a inheritance related inversion, give an example of a inherited inheritance related

inversion. When a set of real time task share certain critical resources using the priority

inheritance protocol is it true, that the highest priority task does not suffer any inversions

let me repeat the question again. If a set of real time tasks that share critical resources

and they are using the priority inheritance protocol, is it true that the highest priority task

does not suffer any inversions the answer is false.

If we said the lowest priority task does not suffer any inversions that would be true, but

the highest priority task could suffer inversion when a low priority task is already

holding a resource and the high priority task becomes enabled. With this will conclude

this course, we just looked at some basic aspects of real time operating systems. We saw

how real time operating system differs from a non-real time operating system, we

considered real time tasks scheduling as the central problem that a real time operating

system needs to handle and we discussed the important task scheduling algorithm we

looked at analysis of tasks to see whether they can be scheduled on a processer, we

looked at resource sharing issues and then we looked at multi processer scheduling, and

then finally, we have been looking at some issues that a real time operating systems

needs to support the traditional operating systems lacks support for that we investigated

why it was so, and then we explained or offered some solutions for that which all real

time operating systems they do follow those.

