
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 02
Basics of Task Scheduling

Welcome back. So, in the last lecture we had a very basic introduction to real time

systems, what is a real time and what is a real time operating system, how is it is

different from a traditional operating system and we had said that one of the major

requirements for a real time operating system is that it should help the tasks meet their

deadlines.

And then we had seen that embedded applications are becoming numerous and that is a

important application area for the real time operating system and then we were looking at

what are the different types of real time systems hard, soft, firm real time systems what

are the examples of that. And now let us continue from there and let us see what are the

different types of tasks, that a real time system might have to handle.

(Refer Slide Time: 01:17)

So, real time operating system the tasks can be broadly saying three types periodic,

aperiodic and sporadic. A periodic task as the name says the tasks recur according to a

timer for example, let us say a chemical plant the parameters of the plant are sensed

periodically and then the computer decides whether to take a corrective action and if here

is a corrective action like changing the temperature or chemical concentration so on it

does within certain time.

So, we will see that for all real time applications the periodic tasks are majority, a large

number of tasks are actually periodic tasks. We might have aperiodic tasks, the aperiodic

tasks they recur randomly and are soft real time tasks. For example, let us say an

operator gives a command let us say to increase the temperature or to reduce the rate of

chemical reaction. So, when the operator will give a comment is not known. It can be

anytime t can be a random and also the response to this command is basically soft real

time once the user gives the command it may take several seconds and there is no hard

deadline by which you needs to do it.

On the other hand there may be sporadic tasks which are again random, but these have

hard deadlines with them for example, let us say a fire condition occurs in a industry in a

chemical plant then the sensors check the condition and they initiate several actions may

be sounding a alarm, may be stopping the reaction may be starting a water shower and so

on. So, when such alarm will occur a fire condition is unpredictable, it is random. But

then the action must be initiated within certain time for the plant to contain such

emergency situation.

So, as we were saying let me just recapitulate. We were saying that in any real time

application a vast majority of the tasks are periodic some tasks may be aperiodic and

these are basically soft real time tasks these are called randomly and another category are

the sporadic tasks these are real time tasks, but they occur randomly and these are rare

aperiodic and sporadic tasks number is very less compared to the periodic tasks.

(Refer Slide Time: 04:53)

Now, another thing that we want to mention is that the timing constraint on a task is

defined with respect to some event. So, once an event occurs then we start counting the

time and we say that before certain time the result must be produced and the event may

be either produced by the system or by the environment we will see examples of both as

we proceed.

(Refer Slide Time: 05:25)

In a typical application there are large number of real time tasks and these get generated

due to event occurrences some of these event may be internal events or may be external

events. Just to give an example that a task may be generated when the temperature sensor

senses a high temperature then the task would be to reduce the temperature may be to

start a water shower and so on.

So, this event is got generated by an external event of temperature increasing to certain

extent. The internal event may be that may be the memory out of memory or may be

some task is taking too much. So, those are the internal events. So, where never a task

gets generated due to an event we say that task is released or is generated or even say

that the task has arrived.

(Refer Slide Time: 06:44)

Now, with this background let us look at the real time tasks scheduling. The most

elementary description will say that the tasks scheduler decides on the order in which the

different tasks to be executed by the computer which one to be executed first, which one

to be executed next and so on. So, it is a tasks scheduler whose role is to decide which

task is to be executed next. And we already said that the tasks scheduler are important

part of all real time operating systems and they are the primary means by which the

operating system helps the applications to meet their deadlines.

As we look at different real time overrating systems the first thing we will mention is that

what is the type of scheduler. So, every real time operating system the scheduler is a very

important component.

(Refer Slide Time: 08:00)

Now, let us look at some basic terminology because we will be using this terminology as

we proceed. A job is a unit of work for example, perform a computation like check if

certain condition is reached or certain condition is satisfied to read a file, to store some

data, to communicate with another tasks etcetera these are examples of jobs. And these

are task instances.

Whereas, the task is a sequence of similar jobs for example, let us say one task may be to

handle the temperature of the chemical plant exceeding some threshold value. So, each

time the temperature sensor measures it and it periodically measures a task is generated

to check the temperature value whether it is above the threshold and then if it is above

the threshold then take some corrective action. So, every few milliseconds or so, when

the temperature sensor gives its input through an interrupt then the task gets generated.

And when the task gets generated we say that the task is released. So, that is shown here

that the task release time and then the operating system starts to execute the task after

some time. So, this is the start up executing this the release time and this is the start up

execution and it may complete after some time and then a deadline is associated with real

time tasks and if the deadline is measured and reported with respect to time zero we say

that it is a absolute dead deadline. Whereas, if the deadline is computed or is reported

with respect to the release time then we call it as a relative deadline that is what is shown

here the relative deadline is starting from the start release task release to the deadline

whereas, the absolute deadline is starting from task time zero in this area that is a

accepted terminology that an instance of a task is called a job.

(Refer Slide Time: 10:53)

A task is typically recurs a number of times, periodic tasks occur they recur periodically

based on some clock interrupt whereas, aperiodic and sporadic tasks they occur

randomly and each time a task recurs we say that an instance of the task or a job has been

generated or released. And when the ith time the task t recurs we say that the job or task

instance T I said to have arrived.

(Refer Slide Time: 11:46)

And we already explained the absolute deadline is a terminology we use to give absolute

time for the deadline starting from time zero whereas, relative deadline is counted from

the release of the task. So, this already shown earlier. So, here because this is important

terminology the relative deadline and the absolute deadline I am just showing it again

from the task release to the deadline is the relative time whereas, from time zero to the

deadline we measure, we indicate it by the absolute deadline.

(Refer Slide Time: 12:24)

Now, let us define another important terminology that we will be using is the response

time. The response time is the time from the release of the task till the task completion

time. So, as the task is released at time T the task execution starts after sometime and

then it executes and completes at certain time. So, the time from release of the task to the

completion time of the task we call it as the response time.

(Refer Slide Time: 13:14)

And we had said that in the traditional overrating system which handles basically soft

real time tasks the response time needs to minimised. And even in the real time

application in the real time operating system if the task is a soft real time task we need

the operating system need to minimise the response time of the task whereas, for the hard

real time and sporadic task minimization of the response time is not the objective, the

objective is to meet the deadlines of the hard real time and sporadic tasks. For hard real

time tasks as long as the task completes within its deadline there is no special advantage

in completing it any earlier than the deadline.

(Refer Slide Time: 14:15)

Now, let us look at another term phase of a task because this also an important

terminology as we look at the task scheduler we will often refer to this phase of a task. In

any real time application there are many tasks and a large majority of that are periodic

tasks, but one thing to note is that the periodic task do not really start from time zero

many periodic tasks do not start the task they start after elapse of certain time. So, the

events keep on occurring here at certain time and then they start, but interlay the task for

some time does not exists. So, this is called as the phase of the task.

Just to give an example to make this point clear we will take the example of a rocket.

(Refer Slide Time: 15:13)

So, once the rocket is fired initially it goes on its own momentum for certain time and

then we do not have a task correction taking place. But after some time the task the

trajectory correction tasks starts let us say that the track correction tasks starts after 2000

milliseconds of the launch of the rocket. So, the phase of this task the task correction task

is 2000 milliseconds. And then once the tasks starts the first instance of the task starts

after 2000 millisecond and then it periodically recurs every 50 millisecond and the

execution time may be 8 millisecond and deadline is 50 millisecond.

(Refer Slide Time: 16:26)

So, that is the description of this track correction task that the phase is 2000 millisecond

after the rocket is fired, for 2000 milliseconds no track correction takes place and after

2000 millisecond the first track correction task starts and then it recurs after 50

millisecond and each track correction task requires 8 millisecond of execution time. And

the deadline for each task once it is released is also 50 millisecond.

(Refer Slide Time: 17:07)

We look at another terminology which we will also use is the valid schedule and the

feasible schedule.

A valid schedule is one where the task is assigned to a processor the task is not scheduled

after it is released. So, only after it is released or generated then the scheduler schedules

it and its constraints that it should proceed some other task etcetera is satisfied, but then

it does not say that whether the deadline will be met. In addition to these aspects if the

deadline is also met then we call it as a feasible scheduler. So, for a valid schedule if the

task deadlines are also ensured to be met then we call the schedule prepared by the

scheduler as a feasible scheduler.

(Refer Slide Time: 18:07)

We have another term as a proficient scheduler. We will see that given a task set for a

application some scheduler cannot really ensure that the tasks meet deadline whereas,

there may be another scheduler which let us these tasks set to meet the respective

deadlines then we say that the second scheduler is more proficient. We say that a

scheduler S 1 is more proficient than S 2 if whenever S 2 can feasibly schedule a task set,

so can S 1, but not vice versa. And two scheduler we say equally proficient, if for any

task set that one scheduler can feasibly schedule, the other scheduler can also feasibly

schedule.

(Refer Slide Time: 19:04)

And an optimal scheduler is one which can feasibly schedule a task set which any other

scheduler can schedule.

(Refer Slide Time: 19:18)

Now, we look at one more important point before we look at the standard schedulers that

is about the scheduling point. We can think of that a scheduler is a software component

which becomes active at certain points of time and then decides which task to run next.

So, on the points of time at certain points of time the scheduler task becomes active and

then decides which task to run next and this points where a decision is made regarding

which task to run next is called as the scheduling points.

Of course, in a clock driven scheduler the scheduling points are defined by interrupts

from a periodic timer. So, they will be policed uniformly on the timeline and they are

generated by clock interrupts and the task the scheduler becomes active as soon as the

clock interrupt occurs and decides which task to run. On the other hand in event driven

scheduler the scheduler does not become active based on a clock interrupt, but it is based

certain events as the name says event driven the events that are that cause these

schedulers become active are not generated by the clock, but by the completion and

generation of tasks.

So, if some task gets generated the scheduler becomes active to check whether this new

task which has come up is it to be scheduled right now and also whenever a task

completes the scheduler becomes active and then decides which task to schedule. We

will see that the clock driven schedulers are simple schedulers whereas, the event driven

schedulers are more complex sophisticated schedulers and they have any advantages

over the clock driven scheduler, but the clock driven schedulers are the ones which are

used in simple chip applications whereas, the sophisticated real time applications the

event driven schedulers are used.

(Refer Slide Time: 22:06)

Now, let us look at the different schedulers that are valuable now that we have basic

knowledge on the real time systems, the task characteristics, terminologies of tasks types

of tasks and so on. Let us look at first tasks scheduling on uniprocessors. Actually tasks

scheduling algorithms were the focus of the research in the 1970s and 80s. Lot of results

became available during those days and many of those results are even referred till now

so.

So, based on research done on those days we have mainly two types of schedulers one is

called as clock driven and event driven. So, if you remember what we said in the earlier

slide is that if the scheduling points are generated by a clock interrupt these are called as

clock driven scheduler. So, here based on a timer the scheduler becomes active

periodically and that is a clock driven scheduler these are simple schedulers. Whereas, in

a event driven scheduler the scheduling points are defined by certain events and what are

those events we said that there are two main events the task starting event or releasing

event and the completion events.

(Refer Slide Time: 24:11)

So, we will look at various types of schedulers one is that endless loop it is just a simple

program without an operating system there are no tasks and it just checks certain

conditions in a loop and then acts, and starting with no operating system we have simple

cyclic executers. There is a single frequency at which the tasks execute, the period of the

tasks the same and once a timer interrupt occurs the tasks are taken up for execution and

then the system waits.

On a multi rate cyclic executive as the name says that there are multiple frequencies

different tasks arise with different periods and we will discuss about the multi rate cyclic

executive and how does it handle these different types of tasks and help to meet their

deadline. So, these do the simple cyclic executive and the multi rate cyclic executive

these are used in rather simple applications whereas, the ones that are sophisticated are

the priority based preemptive schedulers these are the event driven schedulers. We will

discuss our good portion of our discussion is on the priority based preemptive

schedulers, but the next lecture we will discuss about the cyclic schedulers.

Thank you.

