
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 19
Some Basic Issues in Real - Time Operating Systems

Welcome to this lecture. So far, we had looked at some basic concepts in real time

operating systems and then we had said that the scheduler tasks scheduler is actually the

most important part of any real time operating system because it is the one which takes

the primary responsibility in meeting a tasks deadline. We had also looked at resource

sharing problem in real time operating systems and we had looked at protocols to help

solve the problems that arise during resource sharing.

This lecture will continue with some basic issues that arise in real time operating systems

and after that will look at whether Unix can be used as real time operating systems what

problems may arise if we use Unix as it is and how it can be extended. So, let us get

started with the basic issues in real time operating systems.

(Refer Slide Time: 01:41)

One of the most crucial requirement is of course, support for real time priority levels

what we mean by real time priority levels is that once the programmer assigns priority to

the tasks.

The operating system does not change it. So, these are static priority levels, but as you

will see that the traditional operating systems change the priority of tasks dynamically

real time task scheduling policy this is one of the central requirements of any real time

operating systems support for resource sharing protocols because without use of proper

resource sharing protocols.

There can be priority inversions and tasks may miss their deadline low task preemption

times the order of milli or micro seconds when a higher priority task becomes ready the

low priority tasks that is executing must be preempted and this preemption time is the

order of milli micro seconds; the interrupt latency requirements once the interrupt occurs

it must be recognized and the interrupt servician must occur within some bounded small

time.

(Refer Slide Time: 03:23)

Additional requirements and real time operating systems are memory locking support

because in a virtual memory system the page is replaced if it is not used and thereforehen

a page fault occurs it can take a long time and introduce jitters will just look at this issues

and that is a reason why one of the basic requirement for an operating system to serve as

a real time operating system is a support to locking memory and this locked pages will

not be subject to page swapping support for timers both periodic timers and one set

timers high precision timers.

These are frequently required in writing real time applications and need to be supported

by the operating system real time file system support the traditional file system the

blocks are written based on where spaces available under desk, but then the access time

of the blocks where is depending on where it is located on the desk in a real time file

system the blocks are written conjicutively. So, that the access time to the blocks

becomes predictable and finally.

The real time operating systems should facilitate device interfacing because many of the

real time systems they incorporate many sense sensors actuators and. So, on using a new

type of sensor or actuator should not require to rewrite part of the operating system the

device drivers for these devices should be able to be incorporated on the fly do not have

to really shut down the system recompile the operating system and so on should not take

place.

(Refer Slide Time: 05:46)

First let us look at the real time priority levels the real time priority level implies static

priority level that is once a priority is assigned to a task by the programmer should not

change. The operating system should not change a programmer assigned priority, on the

other hand, the dynamic priority; the operating system keeps on changing the priority

level of a tasks you might wonder that why does the operating system needs to do this;

will see this in some detail in this lecture or possible in the next lecture that all traditional

operating system, they change the tasks priority after every times lies the main reason is

to enhance the throughput of the operating system.

(Refer Slide Time: 06:59)

Tasks scheduling support; we had seen that task scheduler is central aspect of any real

time operating system and therefore, the real time operating systems should support task

schedulers like rate monotonic scheduler earliest deadline first scheduler and other

custom task schedulers.

(Refer Slide Time: 07:24)

Resource sharing support; so, tasks in a non trivial application need to share resources

for example, the results of one tasks needs to be pass done to another task they may use a

shared memory for this they may use shared device and so on and we have seen that the

traditional operating systems solution to resource sharing which is the sema force leads

to priority inversions and unbounded priority inversions and we had seen protocols like

priority ceiling protocol the real time operating system need to support the priority

ceiling protocol. So, that that high priority tasks do not miss their deadlines due to the

priority inversion problem.

(Refer Slide Time: 08:22)

The task preemption time need to be low and bounded when a high priority task becomes

ready the low priority task must be contex switched and the high priority task must run

and that should be of the order of few micro seconds because the task deadline is

hundreds of micro seconds. So, if the task preemption time is hundreds of micro seconds

or a second or several milli seconds then slightly that the hard real time tasks will miss

their deadline.

Now, next lecture will look at Unix as a real time operating system and we will see that

one of the major problem is that task preemption time in Unix is the order of the second

and therefore, if a hard real time task has deadline of a 100 micro second or something,

then the tasks preemption time itself is going to cause a deadline in this, but then you

might be wondering at this point that why is that the traditional operating systems like

Unix have such a high task preemption time of a second or something will see this issue

in slightly more detail, but right now, let us just understand that the kernel of a traditional

operating system is non preemptive what we mean by non preemptive is that when a

interrupt occurs the kernel does not service it.

Actually, the kernel disables when in the kernel mode again that will raise many

questions in your mind that why does the kernel have to do it that it disables all interrupts

when executing kernel routines and why does it have to be a second and so on will look

at these point in more detail, but right now will just mention that the large preemption

time is due to the non preemptive kernel and the kernel disables interrupts when

executing kernel routines.

(Refer Slide Time: 10:59)

There are also interrupt latency requirements on a real time operating system what we

mean by the interrupt latency is that.

When an interrupt occurs and by the time the interrupt service routine runs for that

interrupt the time must be small and bounded; let us look at this diagram at this point an

interrupt occurs the interrupt is recognized by the operating system and then it does some

processing for example, saving the occurrent set of registers and so on and then it runs

the interrupt service routine. So, the point where the interrupt occurs the time point at

which interrupt occurs to the time point where the interrupt service routine in starts

running, we call it as a interrupt latency time and for traditional operating system this

time is large of the order of a second, but then in for a real time operating system, this

time should be of the order of few micro seconds and also the time bound on the

interrupt latency must be deterministic that is once we say that the bound is that is a 10

milli seconds in no case, it should exceed 10 milli second, we should be able to give a

deterministic bound on the latency time.

(Refer Slide Time: 12:44)

But then you might wonder that how does such low interrupt latency is achieved in real

time operating system because when a interrupt service routine is running, it may take

several micro seconds and in the mean while if another interrupt occurs then there will be

problem, it has to keep on waiting the way in which the many of the real time operating

systems achieve low interrupt latency and is by performing much of the interrupt service

routine as a deferred procedure call which runs like any other task is acute as low priority

task called as deferred procedure call.

Therefore, as soon as a interrupt occurs the code that runs is a very small code that

creates the deferred procedure call and queues it up as you will see that this is the main

technique that is used to achieve low interrupt latency for the traditional operating

system not only that the kernel should become preemptive that is even if it is running in

the kernel mode the kernel code is executing is still is should be able to preempt kernel

code and also should be able to handle nested interrupts that is when the interrupts

service routines itself is running further interrupts should be recognized and should be

able to process it.

(Refer Slide Time: 14:47)

There are requirements on memory management; for example, in the virtual memory

system and in the memory protection features we need improvement of course, in a very

small embedded real time operating systems where the task size is a small only very few

tasks and the overhead of the operating system needs to be very small the foot print or

the size of the operating system need to be small then the virtual memory is not

supported and even the memory protection feature is whether one task can

unintentionally over write the results of the another tasks or the code of another task is

not guaranteed by the operating system.

Because that would require the additional overhead and we need only a very small size

operating system and therefore, many of the embedded real time operating systems do

not really support virtual memory and memory protection systems, but unless we do

something for let us say a non embedded applications or where in embedded application

where you can afford to have large sophisticated operating system.

We need to do something. So, that the worst case may memory access time is not

increased drastically will just look at that is because unless we do that there will be

memory access jitter what we mean by memory access jitter is that if the data is

sometimes obtained very fast and sometimes obtained after considerable delay variation

in access time is called as the jitter in a virtual memory operating system.

If the page is resident in memory or in the cash then the access time is very first very

quickly the data is obtained by the processor, but if the page is not available on the

memory and page fault occurs, then the hard disk needs accessed and the access time

becomes hundreds of time larger then when it is available in the main memory we need

to do something to prevent such access memory access jitter times otherwise this will

lead to tasks missing their deadline.

(Refer Slide Time: 17:39)

Virtual memory which you might have studied in first level operating system course it

helps to reduce the average memory access time, but then the worst case memory access

time degrades because if the page is not available in memory a page fault occurs and

then it has to be obtained from the hard disk and the page faults incur significant latency,

but the virtual memory also has memory protection as a absurd or by product all virtual

memory systems they support memory protection feature that is each task can access

only those part of the memory for which it is entitled.

It cannot really access the entire memory space that is all the data that is resident in the

computer and this is called as the memory protection feature and if for some reason we

do not support virtual memory may be because the operating system needs to be small

embedded system and we cannot really afford to support a virtual memory system then

memory protection becomes a issue because without memory protection if there is a

error in the operating system code, it becomes very very difficult to debug because the

code the operating system code is over written in the when there is no memory protection

and it just crashes you cannot find out where exactly it is over writing and so on and also

without virtual memory support memory fragmentation becomes a problem.

(Refer Slide Time: 19:52)

Naturally a question arises which are the types of the real time operating systems which

support virtual memory, we need virtual memory when the tasks require large data or the

code is significant that is to meet the memory demands of heavy weight real time tasks

which are large code or require large data; we need virtual memory system and also, if

we need to support running non real time applications in our system like text editor email

client web browsers etcetera it becomes necessary to support virtual memory part of the

real time operating system.

(Refer Slide Time: 20:39)

But let us look at memory protection we said that each task has its own address space a

task cannot access the address space of another task and that is ensured by the memory

protection mechanism when we do not have memory protection all tasks operate in the

same address space the advantage of having a single address space that it is efficient no

checking of protection bits etcetera is necessary and also it saves on the memory its

required to ensure protection.

Therefore the calls become light weight that is efficient and require also less memory for

very small embedded applications which require only one or two small tasks which the

programmer can easily manage then memory protection may be done away with it, but

for applications having many tasks it becomes very difficult to work without memory

protection.

So, for very small embedded applications with just a small memory and a small number

of task memory overhead in the form of protection becomes unavoidable sorry

unacceptable and the programmer can easily manage to program the application even

without memory protection, but then for larger application without memory protection

the cost of development of the program increases because debugging becomes very hard

one task can over write it the data or the code of the another task and not only that

maintenance cost increases later you want to change something becomes very difficult

the change application.

(Refer Slide Time: 22:46)

If virtual memory supported by a real time operating system then we need the memory

locking feature in the memory locking feature?

The programmer can lock a memory page it prevents the page from being soft from the

memory to the hard disk and therefore, the jitter in memory access reduces in the

absence of memory locking support even the critical task can suffer large memory access

jitter and therefore, the tasks scheduling has to be extremely conservative and still the

tasks may miss their deadline because of this memory access jitter.

(Refer Slide Time: 23:32)

The real time operating systems also need to support asynchronous I O the traditional I O

in operating system is synchronous that is a process blocks when it waits for the result;

for example, you are doing a what processing application and you want to save the file

while the file is being saved you can do anything because it is a synchronous call, but if

you are given a same command and at the same time you are able to do also do editing

and other operations.

Then it is asynchronous I O also called as a non blocking I O you can initiate the I O and

then continue operating and call such as asynchronous I O read asynchronous I O write

these need to be supported by a real time operating system because I O is typically slow

and if a process has to a task process has to block on account of a I O then may be sits

deadline becomes very difficult to program a real time task without the support of

asynchronous I O.

(Refer Slide Time: 24:51)

Also if the real time operating system is to be used for embedded systems then the size of

the operating systems sometimes called as a footprint of the operating systems needs to

be very small the other feature that is desirable for embedded applications is the power

saving feature the operating system should take responsibility to save power that is run

the processer in low frequency mode when the load is not high switch off the processor

part and so on when the load is not high and that is how conserve the power.

(Refer Slide Time: 25:43)

So far, in this lecture, we looked at what are the features that set apart a real time

operating system from a non real time operating system we identified about a dozen

features which an operating system needs to support in order to be called as a real time

operating system to make the issues clear and to get a deeper inside in to these aspects

will consider what problems may occur if the traditional Unix is used as a real time

operating system and what is the origin of this problems because unless we know this

issues well we cannot be able to really develop a real time operating system.

If we want to use Unix as a real time operating system we will find many problems

actually all the problems that we all the issues that needs to be supported by a real time

operating system that we identified in this lecture are not satisfactorily supported by

Unix, but then there are two problems which really standout one is the non preemptable

kernel when the Unix operating system is running the operating system code interrupts

are disabled and the second point is dynamic priority levels.

Even if the programmer assigns a priority to a task the operating system keeps on

shifting it the end of every times lies this lecture we are almost at the end of the time will

just look at these issues because these are crucial issues to understand why a traditional

operating system cannot be used as a real time operating system and also why this

problems are there with a traditional operating system in the first place with this will just

conclude this lecture and we will continue from this point in the next lecture.

