
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 17
PCP Priority Inversions

Welcome to this lecture, in the last lecture and even before that lecture we have been

looking at an important resource sharing protocol, the name of the protocol is PCP, the

priority ceiling protocol

(Refer Slide Time: 00:34)

We had seen the protocol itself; we had seen the consequences of the protocol and this

lecture we will do some analysis of the protocol to see, using the protocol whether a task

set in the rate monotonic scheduling will remain schedulable, because the initial results

of the rate monotonic scheduler considered independent tasks

Now, that the tasks share resources will have to see whether the task set remain

schedulable using the priority ceiling protocol. Let us look at the priority ceiling protocol

analysis, we had seen that it prevents deadlocks, it prevents chain blocking these are the

major problem of the simple priority inheritance scheme, it prevents the unbounded

priority inversion which is the problem that arises if we use a simple resource sharing

scheme such as semaphore and also it limits inheritance related inversions.

(Refer Slide Time: 02:05)

Now, let us see what are the inversions that can occur in the priority ceiling protocol and

based on that we can determine the maximum time for which a task can block due to low

priority tasks and that will give us a handle to check, whether a task set would remain

schedulable under resource sharing.

There are 3 main types of inversions in the priority ceiling protocol. The direct inversion,

where a higher priority task waits for lower priority task just because a lower priority

task is holding a non pre-emptable resource, inheritance related inversion, where a higher

priority task needs to wait for a lower priority task just because the lower priority tasks

priority has been enhanced due to the inheritance clause.

The avoidance related inversion; here even if a resource is available a task cannot use

that resource because it is prevented by the priority ceiling protocol because when a task

requests for resource the priority of the task is checked against the current system ceiling

and if the priority of the tasks is less than the current system ceiling, less than or equal to

then it is not allowed to access the resource and this is the scheme that is used for

deadlock prevention because if it requests a resource and it is just granted it can cause

deadlock. Now, let us see what are the durations for which the different inversion can

occur and the tasks due to which the different inversion can occur? Let us do 1 example

problem, then I will give you an exercise problem because these are important design

problems in real time system development.

(Refer Slide Time: 04:33)

First please look carefully, the direct inversion this occurs when a lower priority task TL

is holding a non pre-emptable resource mention CR here and the high priority task also

needs the resource and therefore, it just waits for the low priority task to complete it is

uses of the resource and release it.

(Refer Slide Time: 05:11)

Now, let us see in my example problem whether you can identify the direct inversions

that can occur for a task and what is the duration of that inversion. Please look at these

tasks set, we have 6 tasks and the resource uses indicated here that 3 resources R1, R2

and R3; R1 is used by for 2 units by T2 and 5 units by T1; R2 is used for 1 unit by T1

and 5 units by T4 and R3 is used by for 10 units by T2 and 8 units by T 6. Now, please

identify the direct inversions that can occur in this application, where there are 6 tasks in

the resource is as given. Please remember that, it is the lower priority task that causes the

inversion to the higher priority task.

The low priority task does not face inversion due to high priority task; it is a high priority

task which faces inversion due to a low priority task. So, T1 will face direct inversion on

account of R1 for 2 units, when T2 has already been using the resource R1. Similarly, T2

will suffer inversion for 8 units on account of T6 using R3, also T1 can face inversion on

account of T4 using R2 and that will be for 5 units in the worst case.

(Refer Slide Time: 07:22)

Now, let us look at the other type of inversion, the inheritance related inversions occurs

when a lower priority task is using a resource and a high priority task waits for that

resource in that case the priority of the low priority task is enhanced to be equal to the

priority of the high priority task or in other words the low priority task inherits the

priority of the high priority task that is waiting for the resource.

But then, there are intermediate priority tasks, which do not need the resource, they just

want to use the CPU, but they are prevented from using the CPU, because the priority of

the high priority task has been enhanced due to the inheritance clause in the priority

ceiling protocol and this is the explanation for the inheritance related inversion. Now,

with this explanation let us look at a problem and identify what are the inheritance

related inversion that can occur and for how long?

(Refer Slide Time: 08:47)

So, this is a example of inversion, here a low priority task is holding the resource, a high

priority task is waiting for it and therefore, the priority of the low priority task is

enhanced to be equal to the priority of the high priority task and in the mean while, tasks

which are of intermediate priority they cannot use the CPU because the priory of the low

priority task has been enhanced, so this is a inheritance related inversion.

(Refer Slide Time: 09:33)

Now, let us look at these problem, in a certain application we have 6 tasks, the tasks

priorities are in descending order. So, that is T1 is the maximum priority, T2 is the

second maximum priority, T3 is the third maximum and T6 is the lowest priority here.

There are 3 resources R1, R2 and R3 and the tasks that use the resource for the certain

time is indicated by the number along the arrow, T1 uses R1 for 5 units, T2 needs to use

R1 for 2 units and so on.

Now, please identify the inheritance related inversions that can occur in this application.

When T2 is using R1 and T1 is blocking for the resource R1, T2’s priority gets enhanced

to be equal to T1 by the inheritance clause, but will there be any inheritance related

inversions will any of the task T3, T4, T5, T6 suffer in a inheritance related inversion,

answer is no, because T2 is already the higher priority compared to T3, T4, T5, T6.

So, it does not cause any inversion to the low priority tasks. So, the resource used here

by T1 and T2 that do not cause any inheritance related inversion to the other tasks

because these are already a high priority. Now, let us look at the resource R2, when T4 is

using the resource R2 and T1 is waiting, T4 priority gets increased to that of the T1. So,

which are the tasks that would undergo inheritance related inversion, these are the tasks

T2 and T3 because T4 priority is increased to that of T1, T2 and T3 will be prevented

from using the CPU.

But, for what duration T2 and T3 can at most suffer inheritance related inversion for 5

units on account of T4 using R2. Now, what about R3, when T6 is using R3 and T2 is

waiting T6 priority gets enhanced to that of the T2. So, the tasks which are of higher

priority than T6, but less than T2 is also offers inheritance related inversion T3 T4 and

T5, but for how long that is 8 because T6 can use at most 8 units and these 3 tasks will

suffer inheritance related inversion for at most 8 units.

(Refer Slide Time: 13:21)

Now, let us look at the avoidance related inversion, there is a third type of inversion and

an avoidance related inversion is also called dead lock avoidance inversion. Here, when a

task requests a resource it is priority is compared to the current system ceiling and only if

it is priority is more than a current system ceiling or it is the task that is set the current

system till it is granted a resource, otherwise even if the resource is unused still it will

not be allowed access to the resource and we say that it under goes avoidance related

inversions, this is also called the deadlock avoidance inversions or ceiling related

inversion etcetera.

(Refer Slide Time: 14:21)

Just to give an example, a low priority task is using a resource CR 1, but then the CR 1 is

also sometimes used by a high priority task with priority 10 and therefore, the ceiling of

CR 1 is 10 and when the low priority task uses the resource, the current system ceiling

will be set to 10.

Now, let us assume that at that moment a high priority task whose priority is 8 much

more than the low priority task here, it starts executing and after some time it needs the

resource CR2; CR2 is available, but then the resource will not be granted because the

priority of TH will compared with the common system which is 10 and since it is priority

is let us than the current system ceiling, will not be granted access to the source which is

not being used lying idle, but still it will be not granted and that will call a avoidance

related inversion.

(Refer Slide Time: 15:49)

Now, let us try to identify the avoidance related inversions that can occur in the same

example that we have been considering. What about uses of R1 by T1 and T2? Will there

be any avoidance related inversion? No, not really because a high priority task cannot

cause inversion to a low priority task, if only the low priority task can cause inversion to

a higher priority task.

Now, let us see, whether R2 can cause inversion to any task. When T4 is using R2, the

current system ceiling will be set equal to 1 because T1 also uses R2 and therefore, the

ceiling value is associated with R2 is 1 and the current system ceiling will be set to 1.

Now, let us assume that T2 requires a resource may be R1 or may be R3 and then it

would not been granted resource it will block. So, T2 can suffer avoidance related

inversion on account of T4, but for how long, that is for 5 units. Now, what about this

resource R3? When T6 is using the resource R3, then the current system ceiling will be

set to 2 because the ceiling value associated with R3 is 2.

Now, let us at that time T4 needs the resource R2. T4 priority will be compared with the

current system ceiling which is 2 and it will be denied the resource. So, T4 will undergo

a avoidance related inversion on account of T6 using R3 and the duration of that will be

8, but what about T1? Can it undergo avoidance related inversion? No, T 1 will be

granted by R1 because it is priority is greater than a system ceiling, but what about T2?

Can T2 undergo avoidance related inversion? when it requests a resource let us say R1?

Yes, because it is priority is just equal to the current system ceiling, it will not be allowed

to access to R1 and T2 can also undergo avoidance related inversion.

(Refer Slide Time: 19:05)

Now, let us see some important results related to the avoidance related inversion. The

theorem proof will be available in the text; will just give the basic idea here and the

implications. In the priority ceiling protocol the tasks are single blocking, so that is once

the tasks blocks a resource because the resource being held by a low priority task, it will

not block for another resource that it may need. What is the argument behind that? The

argument is that let us say a task needs a 2 resources R1, R3 and then or let us say we

take the R 4 may be, I am sorry T4 or may be T2, they need 2 resources each, sorry only

T2 needs 2 resources.

So, ones T2 gets the resource R1, the current system ceiling will already equal to 1 and

therefore, the other task cannot really be allowed to grant the resource, they will not be

granting the resource. Similarly, if T2 is holding R3, in that situation also current system

ceiling will be set equal to 2 and the load priority task like T4 cannot take another

resource. So, due to the avoidance a task can be blocked only once for a resource and for

other resource it will be not be blocked by lower priority tasks, has a corollary of that we

can say that the priority ceiling protocol undergoes at most 1 inversion during it is

execution, even though it may be using dozens of resources.

(Refer Slide Time: 21:31)

Priority ceiling protocol is deadlock free, we can argue it in the following line that

deadlock occurs when different tasks hold part of each other’s resource and then they

wait for other 2 release the resource and then they keep on mutually waiting, but here

that situation cannot occur because once a task acquires resource, the priority value is set

to a current system ceiling and therefore, the other task will not be allowed to access the

resource if it is priority is less than a current system ceiling.

(Refer Slide Time: 22:23)

Unbounded priority inversion is also avoided, but how it is avoided, let us try to

understand. When a task is using a resource and higher priority task is waiting and in the

mean while the lower priority task, the priority of that is enhanced to be equal to the task

that is waiting and intermediate priority tasks, they can create a low priority task from

using it, but from here due to the inheritance caused due to priority inheritance protocol;

priority ceiling protocol, the priority of the low priority task is enhanced to that of high

priority task. So, the high priority task cannot undergo unbounded inversion because the

low priority tasks priority is already increased and the intermediate priority task cannot

really prevent it from CPU users.

(Refer Slide Time: 23:44)

So, it is the inheritance caused because of that the priority of the low priority task gets

enhanced and the intermediate priority task cannot undergo, cannot cause the low

priority task to be prevented and therefore, unbounded priority inversion cannot occur.

(Refer Slide Time: 24:07)

Now, let us to understand how a chain blocking is avoided? It is easy to see that, we have

already argued that a task blocks only once per resource and the same proof tells us that

it will not block multiple times for a different resources and therefore, chain blocking is

avoided.

(Refer Slide Time: 24:35)

Now, let us do some numerical exercise to find out to what duration, to what extent a

task may suffer inversions, when the priority ceiling protocol is used. Let us, take some

example problems and then try to identify the various type of inversions that can occur.

(Refer Slide Time: 25:01)

We have 6 tasks here and T1 is the highest priority task and T6 is the lowest and the task

have been ordered in terms of priority, the resource users that is indicated here, there are

3 resources R1, R2, R3 and the duration for which we need the resource is indicated on

the arrow.

Now, first let us identify the direct blocking, which tasks will undergo direct blocking

and for what duration and what about T1? T1 uses the resource R1 and if T2 is already

using the resource it should have to wait for 2 units; T3 is also uses R1 and therefore, T1

might have to undergo inversion on account of T3 for 8 units.

Now, what about T2? T2 can undergo inversion on account of T3 already using the

resource R1 for 8 units. What about T3? T3 does not undergo inversion due to the high

priority task, it undergoes inversion for a low priority tasks. So, T3 can undergo

inversion on account of T4 for 1 unit and similarly T4 can undergo inversion on account

of T6 for 8 units and we have indicated in the form of a table in our problem solving, we

will have to use tables to compute the inversions; the various type of inversions the direct

inversion, the inheritance involved inversion and avoidance related inversion.

So, here T1 undergoes inversion for 2 units on account of T2 and it can undergo

inversion of 8 units on account of T3. T2 can undergo inversion of 8 units on account of

T3 and T3 can undergo inversion of 1 unit on account of T4 using the resource R2 and

T4 can undergo inversion on account of T6 on the resource R3 and that is for 8 units and

we have indicated that avoidance related inversion in the next lecture.

Thank you.

