
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 16
Priority Ceiling Protocol

Welcome back to this lecture. In the last lecture we were discussing about how real time

task can share resources; initially we had looked at the priority inheritance protocol

which is very simple scheme, where a lower priority task which has acquired a resource

inherits the priority of a higher priority task waiting for the resource, but then the basic

priority inheritance scheme had two major problems. One is that it does nothing to avoid

deadlocks and the second is the chain blocking problem, where a higher priority task

needing multiple resources undergoes inversions for each of the resources. We looked at

improvement over the basic priority inheritance scheme known as the highest locker

protocol.

n the highest locker protocol ceiling priorities are assigned to resources depending on

what is the highest priority task that may use that resources. And once a task acquires the

resource its priority is increased to be equal to the ceiling value, and therefore, other

tasks which do not need the resource, but are of higher priority they get blocked, and that

is called as inheritance blocking. And this is a major problem with a highest locker

protocol, and in today’s lecture will quickly complete our discussion and the highest

locker protocol and will discuss the priority ceiling protocol.

(Refer Slide Time: 02:14)

in the highest locker protocol let us look at some of the properties of this protocol, when

a task gets one of its resource it is not blocked any further. What it means is that under

the highest locker protocol chain blocking cannot occur why is that how can we argue? A

formal proof is given in the text book, but then in formally we can understand that when

a task acquires a resource its priority increases. To be equal to the highest priority that

may use the resource and therefore, if any of the resource that is used by a task is

acquired already acquired by another task, then that task would have higher priority and

the current task could not be allowed to run. Let me repeat again that let us a task needs

two resources r 1 and r 2 the pr ceiling value associated with those two resources must be

equal to or greater than the task that we are considering. And let us assume that one of

the tasks is locked by a one of resources is locked by another task, or both the resources

are locked by a other task and then.

Let us assume that this task requires the first resource, and then it blocks until the first

resource is freed, but then the task holding the second resource if priority does not drop

below the task waiting for the resource, because the resource ceiling value must be

greater than the task that is requesting the resource. Therefore, it is easy to see that under

highest locker protocol chain blocking cannot occur and therefore, before a task is

granted one resource all resources that it requests must be free.

(Refer Slide Time: 04:54)

 And it cannot undergo chain blocking, in the highest locker protocol.

(Refer Slide Time: 05:02).

Now let us look a its behavior with respect to deadlock. Let us assume that the task T 1

and T 2 are the similar sequence of events as occurred in the case of simple priority

inheritance scheme where we showed that deadlock occurs. Here let us assume a similar

set of instructions let us assume T 2 is the lower priority it locks R 2, but once it locks R

two the priority of T 2 gets increased at least to equal to T 1 and therefore, T 1 cannot

become ready cannot get CPU to lock R 1 and therefore, T 2 priorities increased atleast

to that of T 1 and it locks R 2, R 1 then unlocks R 1, R 2 etcetera. So, deadlock cannot

occur you can take any other example, and see that deadlock cannot occur because T 2s

priority is made equal to the ceiling priority of the resource it locks and if the other tasks

needs the resource its priority will be as much as the priority of the other task and also it

prevents unbounded priority inversion because the tasks priority as soon as it acquires

the resource increased to high value, which is the ceiling of the resource.

(Refer Slide Time: 06:47)

But as we have already discussed that the major shortcoming of the highest locker

protocol is the inheritance blocking. Since the priority value of a low priority task as

soon as it acquires a resource is raised to a high value, the other intermediate priority

tasks which do not need the resource undergo inheritance blocking, and the intermediate

priority tasks can miss their deadline; because for multiple lower priority tasks they may

face inversions priority inversions and they may miss their deadline. let us look at the

blocking time for a task.

(Refer Slide Time: 07:36)

Let us assume that uses s set is the set of all tasks that use the non preamptable resource

S, and T k S C T k s is the computation time using the resource S for the task T k

therefore, any task T i can be blocked to the maximum time which is the maximum of T

k using the S and T k is in uses S. What it really means is that, for if we are trying to

compute what is the maximum blocking time for a task T i which does not need the

resource. We find all the lower priority tasks. So, that is pk priority of k. So, that is all

lower priority tasks and we find that what are the resources it uses and then find what is

the maximum computation time using the resource. For all the lower priority tasks what

is the resources, they use and what is the maximum time they use and that is the blocking

time per the task I.

(Refer Slide Time: 09:18)

The highest locker protocol is used in many operating systems for example, the POSIX

standard there we have the priority locking mutex, where we have this set priority to p

thread and PRIO protect; the PRIO protect basically is the highest locker protocol. So, its

supported by POSIX, Linux does not support highest locker protocol, but other

programming languages supports highest locker protocol, even the real time specification

for java supports highest locker protocol though it calls it a the priority ceiling emulation.

(Refer Slide Time: 09:55)

The inheritance related priority inversion as we have already mentioned is a severe

problem, tasks not needing the resource the intermediate priority task undergo inversion,

and the priority ceiling protocol overcomes this drawback to a large extent. By this time I

hope that we have understood; what are the drawbacks of the basic priority inheritance

scheme, and also the highest locker protocol.

(Refer Slide Time: 10:34)

Now let us look at the priority ceiling protocol, which is a improvement over the highest

locker protocol and most of the sophisticated real time operating systems use the prio

priority ceiling protocol or PCP very very simple operating systems, do not use PCP

because the scheme is slightly more complicated, than the basic priority inheritance

scheme in the highest locker scheme.

(Refer Slide Time: 11:03)

Now, let us see the main idea here just like the highest locker protocol, each resource is

assigned a priority ceiling. And the main difference with respect to the highest locker

protocol is that a tasks priority does not become equal to the ceiling priority of the

resource as soon as it acquires a resource. But here its only a system variable the value

becomes equal to the ceiling value, the tasks priority for acquiring a resource does not

change, but only the a variables a system variable whose name is current system ceiling

the value of that increases.

Let us look at this example if R is a non preamptable resource being used by three tasks

T 10, T 2 and T 5 then the ceiling value associated with R is equal to T 2 and any task

which acquires the resource, the tasks priority does not increase unlike the highest locker

protocol, it continues with the same priority, but then there is a sys there is a operating

system variable whose value becomes two when any of the task acquires the resource.

(Refer Slide Time: 12:49)

To look at the difference between priority inheritance protocol and priority ceiling

protocol, the priority inheritance protocol is a greedy approach, whenever a task requires

a resource it gets it if the resource is free. But in the priority ceiling protocol we will see

that even if a resource is available a task executing requesting that resource may not get

it under some circumstances. So, we can say that priority ceiling protocol is not a greedy

approach in contrast to the priority inheritance protocol which is a greedy approach.

(Refer Slide Time: 13:34)

Now let us look at the current systems ceiling, this is operating system variable, and

whenever a task acquires a resource the tasks priority does not increase it is only the

current system ceiling which gets the value of the maximum ceiling of all the resources

that are being used. So, if C R i is the set of resources that are currently being used, then

the c ceiling of the C R i maximum of that becomes the CSC. If there are two resources

let us say C R 1 and C R 2 the ceiling value of C R 1 is 5 and the ceiling value of C R 2

is let say 2 and 2 is higher priority then if both resources are become used then CSC will

be set to 2. At the start of the system the CSC is initialized to 0 now let us see how does

the resource sharing occur under the ceiling protocol. There are actually two rules the

first rule applies when a tasks requests a resource is called as the resource request rule,

the second rule is called as a request release rule this rule now applies when a task

releases a resource.

(Refer Slide Time: 15:08)

First let us look at the resource request rule; in the request in the resource request rule

there are two clauses first is called as a request grant clause, where a task requesting a

resource gets a resource, the second is called as the inheritance clause where a task does

not get the resource, but it blocks. Let me repeat again in the resource grant clause this

clause is applied when a task is granted a resource, where as a inheritance clause is

applied when a task does not applied a does not get the resource it requested, but it

blocks first let us look at the request grant clause.

(Refer Slide Time: 15:57)

Simple clause here once the task gets the resource, then the current system ceiling is

checked with the ceiling of the resource it has got and if the ceiling is greater than the

current system ceiling then the current system ceiling is set to the resource, and the task

is not allowed to lock a resource unless its priority becomes greater than CSC. In the

resource grant clause the tasks priority is checked with a current system ceiling, and if its

priority is greater than the current system ceiling, then it is granted the resource, and the

current system ceiling is set to be equal to the ceiling value of the resource that was

granted.

Let me repeat again because this a important clause here, resource grant clause when a

task requests the resource first its priority is compared with a current system ceiling; and

if its priority is greater than the current system ceiling it gets the resource its granted the

resource, and the CSC value is set equal to the ceiling priority of the resource. But if the

task requesting the resource priority of the task is less than CSC, it is not granted the

resource and it blocks.

(Refer Slide Time: 17:45)

So, in the resource grant clause, a task requesting a resource if it is holding a resource.

So, ceiling priority is equal to CSC then it is granted access to CR. So, there are two

clauses here in the resources resource grant clause, the first is if it is priority of the task is

greater than the ceiling priority it is granted the re resource and the current system ceiling

become equal to the ceiling associated with the resource. But even if its priority is not

greater than the current system ceiling, but then if it is holding any resource whose

ceiling priority is equal to the CSC, then also it is granted access to C R otherwise it is

not granted access to the resource and it blocks.

(Refer Slide Time: 18:50)

And as I was saying that as soon as task is granted the critical resource, the current

system ceiling is made equal to the ceiling of the resource that is granted if the ceiling of

the resource is greater than the current system ceiling.

(Refer Slide Time: 19:07)

Now let us look at the inheritance clause, if a task is made to block its not granted the

resource, then the task holding that resource inherits the priority of the blocked resource.

Let me repeat again if a task blocks for a resource, then the task holding the resource

inherits the priority of the blocked task. A task that has holding a resource does not

change its priority unlike the highest locker protocol, but only when a task blocks per a

resource it inherits the priority of the task.

(Refer Slide Time: 19:57)

Now let us look at the resource release rule, its just the reverse of the resource grant rule.

Here as soon as a task releases the resource, the CSC is again checked with all the tasks

that are under all the resources that are under use, and the ceiling is set to the maximum

of that. But if the current system ceiling is equal to the ceiling of the current the task

sorry the resource that is released then the CSC remains unchanged.

Let me repeat again the current system ceiling as you know it is the maximum ceiling of

the resources under use, if a resource is returned and that is equal to the CSC, then all the

resources are checked their ceiling values obtained and the maximum of that ceiling

value is assigned to the CSC, but if the ceiling value of the current resource is less than

CSC then CSC remains unchanged and also the priority of T 1 is updated if it is released

a resource, then any task that was blocking on that resource it ma might have inherited

the priority. So, the tasks priority in that case is reverted back to the original priority.

(Refer Slide Time: 21:44)

Let us look at the working of the ceiling protocols with some examples, this is the

resource critical resource being used by three tasks T 1 ,T 2, T 3 priority of T 1 is 10,

priority of T 2 is 2 and priority of T 3 is 5. And since three tasks can use C R 1 the ceiling

priority associated with C R 1 is 10 assuming that 10 is the highest priority just like in a

window based system to start with the current system ceiling is set to 0 and let us assume

that T 3 locks C R 1. T 3 priority does not change unlike the highest locker protocol it

continues with high priority, but then the current system ceiling is equal to the ceiling

priority of C R 1 which is equal to 10. So, the CSC value only increases.

(Refer Slide Time: 22:58)

 And let us say next time another task requests a resource, it is the task T 2 whose

priority is two has acquired the resource and the current system ceiling is set to 10 and

now let us say there is a task T 3, which is executing because t twos priority does not

change it continues to operate at the priority level 2 and let us say a priority five task T 3

executes. And after sometime it requests T 2 and in that case the inheritance clause will

apply and the priority of T 2 will become 5. And as soon as it releases the resource the

release clause will apply and its gets back its older priority of two and the current system

ceiling is still 10 because T 3 is being eh using C R. So, the ceiling priority of the

resource is assigned to the current system ceiling and.

Let us say T 4 is another task which is needing a different resource C R 2 it will not be

allowed to lock this resource because the priority of T r t 4 will compared to the CSC

which is 10 even though the priority of T 4 is 6 which is greater than t three, but then it is

requesting a resource which is idol C R 2 will not be granted because in priority grant

clubs the priority of T 4 will be compared to the current system ceiling and since the

current system ceiling is more than the priority T 4 will not be allowed to lock the

resource.

(Refer Slide Time: 25:25)

So, let us examine the priority ceiling protocol what really happened when a task is

granted a resource, its priority actually does not change only the current system ceiling

changes unlike the highest locker protocol, the task continues to execute at its own

priority.

So, other tasks which do not need resource they do not get blocked, unlike the highest

locker protocol were blocking by a task just because a lower priority task has acquired a

resource does not occur and that we had called as inheritance related inversion the

inheritance related inversion. In that sense does not occur here because as soon as a task

acquires a resource its priority value does not change. The other tasks continue to

execute as usual no inheritance re related blocking occurs. The priority of task changes

only when another task requests the resource that is holding the inheritance clause

becomes applicable and the task priority increases.

(Refer Slide Time: 26:50)

 If we analyze the priority ceiling protocol, we will see that it prevents deadlocks,

prevents chain, blocking prevents unbounded priority inversions and also limits the

inheritance related inversion.

The inheritance related inversion is a big problem with highest locker protocol, and that

is reduced to a large extent by the priority ceiling protocol and therefore, priority ceiling

protocol though it is a slightly more complicated protocol then highest locker protocol,

but is being used in many applications.

(Refer Slide Time: 27:34)

Now, let us do a small analysis of the priority inversions that can occur in the ceiling

protocol priority ceiling protocol if we look at the different types of priority inversions

that can occur in the priority ceiling protocol, we will have three types of inversions one

is called as direct inversion the other is inheritance related inversion and the third we call

is avoidance related inversion.

(Refer Slide Time: 28:00)

The direct inversion is simple, here when a lower priority task is holding a resource a

higher priority task has to wait until the lower priority task releases the resource. Let me

repeat again that in a direct inversion, a lower priority task is holding a resource the

higher priority task has to wait a higher priority task needing that resource has to wait

until the lower priority task completes its uses of the resource and releases it.

(Refer Slide Time: 28:41)

Now this is a small exercise here there are 6 tasks, and in this task graph what are the

resources critical resources each task needs and what is the duration for which needs has

been represented. T 1 and T 2 need R 1, T 1 needs it for five units T 2 needs for two units

r three is needed by T 2 and t six and R 2 is needed by T 1 and T 4 for 1 and 5 unit

respectively.

Now please identify the direct inversions that can occur, and assume that the tasks have

been sorted in terms of their priority values that is T 1 is the highest priority and t six is

the lowest priority. tTe direct inversion can occur in case the T 2 is holding R 1 T 1 has to

wait even though T 1 is a higher priority and the time for which T 1 has to wait is two; on

account of R 1 and T 2. Similarly T 2 has to undergo inversion direct inversion on

account of T 6 and resource r three for a duration of eight similarly T 1 has to T 1 mean

the worst case undergo 5 units of inversion on account of T 4. I hope that the direct

inversion is clear that a higher priority task will undergo direct inversion account of a

lower priority task holding the resource we are just running out of time for this lecture

we will stop here and we will look at the other types of inversions that can occur in the

priority ceiling protocol in the next lecture.

Thank you.

