
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 15
Highest Locker Protocol

Welcome, to this lecture over the last few lectures we have been looking at the Real Time

Schedulers, initially started with the simple task schedulers, which are the clock driven

schedulers. Then looked at the event driven schedulers and we identified two important

schedulers the red monotonic scheduler and the earliest fast dead line scheduler, and

between these two, we said that red monotonic scheduler is overwhelmingly popular,

being used in many, many applications and also directly supported by the Real Time

Operating Systems.

We start with we simplified the problem, we considered the task state is independent and

then slowly we were trying to make it applicable to realistic applications and in the last

class, we are looking at the problems that arise when tasks share resources, non-preempt

able resources. And we have identified that the traditional operating system of sigma 4

does not work well. The problems that are faced are priority inversion and unbounded

priority inversion, priority inversion as it is can be solved by careful programming by

reducing the time per which a low priority task uses its critical section.

But unbounded priority inversion is a very, very severe problem and many applications

in the past half field for not properly addressing the unbounded priority inversion

problem. We had explained, what exactly is the problem and then we are looking at the

solutions. The simplest solution is the priority inheritance protocol, where a low priority

task inherits the priority of higher priority task waiting for the resource. We saw in the

last lecture that this protocol the simple, priority inheritance protocol does overcome the

unbounded priority inversion problem.

But then it introduces some problem and also does not address well some other

problems. Now let us first identify these disadvantages of the basic priority inheritance

protocol then we will look at more sophisticated protocols.

(Refer Slide Time: 03:28)

So, let us look at the short comings of the basic priority inheritance scheme, there are

two important drawbacks of the priority inheritance protocol. The first one, is a chain

blocking, we will see what exactly is chain blocking and then the second is it does

nothing to prevent deadlocks.

So, when we use the basic priority inheritance scheme, the tasks may get deadlocked, but

we will see that more sophisticated algorithms, which are basically improvements over

the basic priority inheritance protocol they overcome these problems.

(Refer Slide Time: 04:19)

First let us, try to see how deadlocks occur when the priority inheritance protocol is used.

Let us assume that there are two real time tasks T 1 and T 2 and these both of these tasks

need two resources. T 1 needs both CR1 and CR2 and T 2 also needs both CR and CR1

and CR2, and let us assumes that by the rate monotonic scheme T 1 has higher priority

than T 2.

But then, T 2 starts running fast because there are no jobs for T 1. Because, T 1 phasing

is later than T 2 or may be the T ones instance has just completed and T 2 is starting to

use. Now T 2 runs first and then these are the sequence of operations, they undertaker T

2 it executes the instruction lock R 2, and since the critical resource R 2 is available it

can successfully lock R 2 and then it does some extra processing some other processing

it does by that time the task T 1 instance arrives being a higher priority it preempts T 2.

But, then after some local processing it locks R 1 and then does more processing using R

1, and then needs the resources R 2. And when it locks R 2, R 2 has already been locked

by T 1 and therefore, sorry R 2 has already been locked by T 2 and therefore, T 1 blocks

and then T 2 gets the control T 2 starts executing, it does some executions using R 2, but

then it needs R 1 and as its tries to lock R 1 R one is already locked by T 1 and that is the

deadlock situation.

So, using the basic priority inheritance scheme, deadlocks can arise of course, you can

see here that once T 2 sorry T 1 locks on T 2, T 2 priority increases to T 1, but that does

not help still, the deadlock arises.

(Refer Slide Time: 07:31)

Now, let us look at the second problem that the basic priority inheritance scheme suffers

from goes by the name chain blocking. First let us see what do you mean by chain

blocking, the chain blocking arises when a task needs a number of resources and.

The chain blocking causes each time the task needs a resource different resource it

undergoes priority inversion, that is if a ask needs n resources, each time it requests for

one of the resources. It undergoes inversion waits for the resource and by that time lower

priority tasks execute and multiple priority inversions occur and in the chain blocking

situation, when a task needs multiple resources the waiting time all together can be very

high and high priority task can easily miss the deadline.

So, chain blocking is a severe problem, now let us throw a schematic diagram. Let us, try

to understand what exactly is the chain blocking, let us assume that the highest priority

task T 1 needs several resources, let us say it needs two resources.

(Refer Slide Time: 09:10)

So, task T 1, initially blocks for CR 1 because T 2 is holding CR 1 and CR 2. After

sometime, T 2 releases CR 1 and T 1 starts executing, but then after sometime it needs

CR 2 and again it blocks for CR 2, but in the process it undergoes priority inversion. So,

a high priority task under the priority inheritance scheme can undergo multiple priority

inversion. If it uses multiple non pre emptible resources, but we will see that more

sophisticated algorithms to overcome the chain blocking problem.

(Refer Slide Time: 10:13)

This is another more generalized example, let us assume that task T 1 is a high priority

task. It does some local processing without using resource then it needs the resource R 2

and then it does further processing, using R 2 then it needs R 3, then it needs R 4 and.

So, on now let us assume that there are several low priority tasks, which need this

resources for example, T 2 needs the resource R 2 it does some processing with R 2, T 3

does processing with R 3, T 4 with R 4, T n minus 1 with Rn minus 1 and T n needs the

resource R n.

(Refer Slide Time: 11:10)

Now, Let us assume that initially, the task T n which is the lowest priority starts

executing, and it locks R n. Similarly, all other tasks they lock their resources and at that

instant the task T 1 arises, an instance of T 1 arises. It does some processing initially, but

then it needs the resource R n, gets blocked sorry, it needs the resource R 2 and R 2 is

already blocked by is already locked by T 2 and therefore, T 1 gets blocked.

Now, T 2 starts executing, because T 1 has blocked CPU becomes available and it does

local processing and releases R 2, and then T 1 gets R 2 starts processing and needs T 3

sorry, R 3 which is held by T 3 and so on. So, for all the n resources it undergoes priority

inversion one after the other.

What is the maximum time that it gets blocked, the maximum time the task T 1 gets

blocked is equal to the time per for each of these holds is a sum of the time per, the

duration per which for each of the task held holds their respective resource for example,

for this situation. The total blocking time for the task T 1, due to the n resources will be

the time per which T 2 will uses the resource R 2, T 3 uses the resources R 3 and so on.

And T n needs the resource R n, which can be large.

So, chain blocking is a savior problem in the simple priority inheritance scheme. The

simple priority inheritance scheme as we will see requires very minimal support from

operating system and therefore, in simple applications it is actually used, but then the

programmer the designer of the application must keep in mind, these two savior

problems that they might face the deadlock problem and the chain blocking problem.

(Refer Slide Time: 13:57)

Now, let us look at some properties of the simple priority inheritance protocol, let us say

a task T a needs a resource, which is used by k other lower priority tasks let me repeat,

that a task T a needs a resource non pre emptible resource which is also used by k lower

priority tasks. Then under the priority inheritance scheme what is the maximum duration

for which the task T a may suffer priority inversion, the answer is that it is maximum of

the execution time of the k lower priority tasks for which they need the resource the non

pre emptible resource.

If e i is the time for which the task T i needs the resource, then the worst case blocking

time for the task T a is maximum of e i considering all the tasks T i. The second theorem

is that if a task needs k resources, the first one we had looked at one resource needed by

a task here a task needs k resources and each of these k resources is used by several of

the lower priority tasks. Now what will be the total waiting time for the task T a in the

worst case as you can see that this is a generalization of the first theorem, and also we

know.

That the priority inheritance scheme suffers from chain blocking. So, for each of the

resources it requests it may undergo blocking. So, it will be sum of the maximum of e i,

for each of the resources.

If there are three resources and these three resources are used by different sets of lower

priority tasks then the total blocking time for the high priority task. In the worst case,

will be the blocking time for the first resource, plus the blocking time of the second

resource, plus the blocking time of the third resource, where the blocking time for each

resource is given by theorem 1.

(Refer Slide Time: 17:00)

Now, let us look at some improvements to the basic priority inheritance scheme and we

have seen that the priority inheritance scheme is a simple, but powerful protocol it does

overcome the unbounded priority inversion problem, which is a severe problem can

cause tasks to miss their deadline, but then we saw that it is rather two simple and suffers

from two major problems the deadlock problem and chain blocking problem.

Now let us look at the first improvement which is done by the highest locker protocol,

the highest locker protocol there is also a priority inheritance scheme, but it is slightly

different here for each resource that is under used by a task a ceiling priority value is

assigned. The ceiling value is computed as the highest priority task that can use that

resource. So, let me repeat that the main idea in the highest locker protocol is that a

priority value is assigned with to a resource. It is called as a ceiling value, for that

resource which equals to the highest priority task that may ever use that resource.

Now, let us look at an example if R is a resource and is used by 3 tasks T 2, T 5 and T 10

and let us assume, that T ten sorry let us assume that T 2 is the highest priority task. Then

for the resource R, there is a ceiling value assigned which is equal to 2. And the highest

protocol requires that when a task requests a resource, then the priority of that task is

raised to the ceiling value for example, if the resources R is available and let us say the

task T 10, gets the resource R, requests and gets the resource R.

Then T 10s priority value will be raise to 2, in the highest locker protocol each resource

is associated with a ceiling value and as soon as any task locks to the resource the

priority of that task becomes equal to the ceiling value.

(Refer Slide Time: 20:03)

We can easily see that this protocol overcomes, the shortcomings of the basic priority

inheritance scheme, but then it introduces a very difficult complication. We will see what

is the complication a little bit while from now, but then we will also look at an

improvement to the highest locker protocol which is called the priority ceiling protocol,

that overcomes the not overcomes to large extent overcomes the problem that highest

locker protocol introduces.

The highest locker protocol is small improvement of the basic priority inheritance

scheme, and if we understand the highest locker protocol then it becomes easy to

understand the ceiling protocol. The priority ceiling protocol the priority ceiling protocol

by itself is little more complicated then both the priority inheritance scheme and the

highest locker protocol, and if we know the two protocols the priority inheritance

protocol and the highest locker protocol then it will become very easy to understand the

working of the priority ceiling protocol.

But then the priority ceiling protocol is the best protocol even though it is slightly more

complicated, but it overcomes largely overcomes all the problems of the basic priority

inheritance scheme and the highest locker protocol. In the highest locker protocol, during

the design of an application what are the tasks and what resources they need is analyzed

and then. A ceiling value is assigned to all critical resources and whenever a task

acquires a resource a critical resource its priority becomes equal to the ceiling. And that

is the simple protocol, let me repeat again that during the design of the system all the

critical resources are assigned a ceiling value.

The ceiling value is equal to the highest priority task that may ever use that resource and

each time a task a lower priority task or any other task acquires the resource its priority

increases to the ceiling value, that is the inheritance scheme here that assumes as a task

acquires the resource, its priority value increase becomes equal to the ceiling value

associated with the resource.

(Refer Slide Time: 23:10)

Let us look at an example, let us assume that there is a critical resource R and the

resource R is being used by 3 tasks, T 1, T 2 and T 3 and there will be a ceiling value

associated with the R which is equal to the maximum of the priorities of T 1, T 2 and T 3.

(Refer Slide Time: 23:39)

Let us see, schematically how does the protocol work we have these let us assume that T

1s priority is 5, T 2s priority is 2 and T 3s priority is 8, now what will be the ceiling value

that will be associated with R. Let us assume that 2 is the highest priority and 8 is the

lowest priority, in that case the ceiling value associated with the resource R is equal to 2,

because 2 is the highest of 2, 5 and 8. So, the ceiling value that will be associated with R

is 2.

(Refer Slide Time: 24:25)

But, one thing I need to clarify is that sometimes saying the 2 is the highest priority and

some other time we are using 8 as the highest priority. Actually the confusion arises

because different operating systems, they use different conventions for example, in

Microsoft windows and some other operating systems the priority value is the high,

higher the priority, the higher is the priority value.

So, T 10 will have higher priority than T 5 or T 1. So, the higher the priority value the

higher is the priority, T 10 is higher priority than T 5 or T 1 whereas, in Unix and the

Unix derivative operating systems. The exactly reverse is the conversion a lower priority

indicates higher priority, a lower priority value indicates higher priority and higher

priority value indicates lower priority. So, if a task is used by a 3 sorry, a resource is used

by 3 tasks T 2, T 5 and T 8 then.

The ceiling value will become 2 because, 2 is the highest priority whereas, in the

operating system, such as windows based operating systems. It will become 8 and that is

why we have been using this two different conventions.

(Refer Slide Time: 26:16)

The protocol is simple once, the ceiling values are associated with resources each time a

ask acquires a resource. It inherits the ceiling priority and then as it relinquishes the

resource it completes processing with the resource and releases the resource then it gets

back its earlier priority, this protocol helps to overcome the problems of unbounded

priority inversion, deadlock and chain blocking, but then it creates a new problem which

is called as the inheritance blocking.

(Refer Slide Time: 27:01)

Let us look at an example, let us assume that the resource R is a critical resource used by

3 tasks T 1, T 2 and T 3. T 1 with priority 5, T 2 with 2 and T 3 with 8 and the ceiling

value associated with the resource is equal to 2, and the resource was available and

acquired by T 1 whose priority is 5 and T 2 blocks on the task T 1, T 1s priority becomes

2 and then the tasks T 4, T 5 etcetera. These are higher priority than T 1, but then since T

1 priority is increased they cannot really get the CPU, because T 1 priority has been

increased and T 4 T 5 etcetera.

Undergo inversion and that we call as inheritance related inversion, T 1 as soon as it

requires the resource its priority increases to 2 and the other tasks needing the which are

ready, but higher priority than T 1 cannot get CPU and they undergo inversion, we call it

as the inheritance related inversion. Now we are the end of the lecture we will stop at this

point and will continue in the next lecture.

Thank you.

