
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 14
Solution to Priority Inversion Problem

Welcome to this lecture in the last lecture, we were looking at how resources can be

shared among tasks in the framework of tasks scheduling maybe a rate monotonic

scheduler or and earliest deadline first scheduler. And we had discussed about critical

sections semaphores which are basically topics that are discussed, in the first level

operating system course and we did not really spend time discussing semaphores and

critical sections.

But then we had remarked that the semaphore solution used in a traditional operating

system cannot be used as it is in a real time application because it can lead to severe

problems. And the problems are known as priority inversion, and unbounded priority

inversion a simple priority inversion arises when a low priority task has locked a non

preemptable resource, and a higher priority task cannot execute and just waits for a

resource. So, we have a priority inversion example where a low priority task is executing

and high priority task is waiting, but then the priority inversion problem by itself is not

too bad it can be solved using careful programming as we will see.

But then what really is a difficult problem is unbounded priority inversion, where the low

priority task which is holding the resource is preempted from CPU uses by other

intermediate priority tasks which do not need the resource, towards the end of the last

lecture we are discussing about a critical section and how priority inversion can arise,

unbounded priority inversions and what are the solutions.

(Refer Slide Time: 02:39)

Now, let us look at that same example that we have task T 1 and task T 3 that need to

share a non preemptable resource; that means, they need to access that resource in

exclusive mode, and only when a task which is already using the resource completes its

execution using the resource no other task can use it both the tasks are the following type

of code, they have some part of the program where they do some processing without

using the resource.

But then when they want to use the resource, because it is a non preemptable resource

before they start to use the resource they invoke p x which is basically wait for

semaphore, and after getting access to the semaphore they starting executing the shared

resource. And after completing the code segment here after the part of the code using the

shared resources is over they execute the instruction V x which is signal semaphore to

release the resource.

And then more local processing without using the resource, the part of the code in which

the shared resource is used by a task starting with a same wait signal till the same signal

is the critical section of the code.

(Refer Slide Time: 04:30)

Now let us see how the priority inversion in such a situation can arise, we have a task T 3

which is of low priority does some local processing denoted by L and after sometime it

gets into the critical section. So, before starting using resource it does a wait semaphore

and because, the semaphore is available it could get the resource and starts executing

using the resource, but at that point of time that is T a high priority task which is T 1

starts executing, and it does some local processing here, and until a point t plus 3 where

it gets into its critical section and does a lock resources or a same width instruction

execution.

And since the resource is already held by T 3 the task T 1 gets blocked, and once it gets

blocked T 3 becomes active uses a resource and after sometime at t plus 4 it completes

the execution, and then T 1 gets the resource starts executing does local processing, and

then after it completes then T 3 gets the CPU and starts executing. So, this is an example

of a single priority inversion, and the time for which the task T 1 gets blocked is between

t 3 and t 4 where the task t 3 completes uses of its critical resource. Then let me just ask

this question that what is the maximum duration for, which task T 1 can suffer priority

inversion. The answer to this question is that its equal to the largest duration for which

the task T 3 would need to use the critical resource R.

(Refer Slide Time: 07:14)

Now let us look at the unbounded priority inversion problem due to the same resource R.

The task T 1 can suffer 2 priority inversion, when the task T 2 which does not need the

resource starts executing and preempts T 3 from using the CPU, and therefore, T 1

suffers 2 priority inversion 1 on account of T 3 and the other on account of T 2, this T 2

is executing and T 3, T 1 would be waiting because it does not have the resource and T 3

is holding the resource and not being able to execute because the T 2 has started

executing. So, there are 2 priority inversions as you can see, 1 is an account of T 3 for

this duration, and another on account of T 2 for this duration.

(Refer Slide Time: 08:23)

If we extend this example we come to the example of a unbounded priority inversion

here, we are considering multiple intermediate tasks here, intermediate priority task T 3

is the lowest priority T 1 is the highest priority, but there are T 2 1, T 2 2, T 2 n etcetera

these are intermediate priority tasks and once T 1 blocks for the resource for T 3 the

intermediate priority task keep on executing 1 after the other.

And T 1 keeps on waiting for T 3 to be able to get the CPU complete its execution, but

by that time T 1 misses its deadline. So, there is a application failure.

(Refer Slide Time: 09:20)

Unless the unbounded priority problem is handled adequately a real time application can

fail there are many examples in the past where application failure was caused by this

problem of unbounded priority inversion, but possibly the most celebrated example is the

mars path finder, let us see what happened, there mars path finder landed on the mars

surface on 4th July 1997.

 And as it enter the mars surface the vehicle which is the sojourner rover it was

surrounded by air bags slowly it dropped down to the mars surface, it moved out from

the airbag on to the mars surface, and started transmitting to the earths station large

amount of data. And this data included pictures of the mars surface, and which were

released by NASA and their publicly available on the web.

(Refer Slide Time: 10:48)

 A few of the pictures here, a large number pictures were transmitted by the rover 1

picture of the mars surface the rover has landed on the moon surface surrounded, by bags

and started taking pictures.

(Refer Slide Time: 11:10)

This is another image from the mars path finder courtesy NASA released to the public.

(Refer Slide Time: 11:22)

But then the pathfinder began experiencing system resets. The system after every few

seconds started resetting itself, and as a result data could not be transmitted only a part of

the data would be transmitted and it reset, and again it starts transmitting and resets so,

complete data could not be transmitted. Newspapers at that time they reported that the

mars path finder is experiencing failures, and the terminologies they used to describe the

failure is there are software glitches, which is causing the pathfinder to fail some other

newspapers reported that the computer in the pathfinder was trying to do too many things

at once and therefore, was failing and so, on.

(Refer Slide Time: 12:32)

But then in the laboratory in NASA they were desperately trying to fix the probe. In the

mars pathfinder V x works which is a real time operating system, from the Wind River

systems was being used, and the rate monotonic scheduling of threads was used.

And in the pathfinder different tasks the shared resource sorry the shared information

through shared memory 1 task would write to the memory, and other task would read it

and so, on. So, the different components of the spacecraft could communicate with each

other through shared memory.

(Refer Slide Time: 13:30)

To debug the pathfinder the NASA scientists they had a replica of the pathfinder in their

lab, they started doing a simulation of what used to happen in the mars surface, but they

set the debug mode on where they can find out where context switches occur

synchronization among objects take place. When interrupts occur all these they could see

and finally, after several hours of working with the replica of the pathfinder they could

converge and precise conditions under which the reset occurred.

(Refer Slide Time: 14:25)

They found that there was a mutex a semaphore that was being used, and a Boolean

parameter a global variable where is used which was a Boolean global variable, and

depending on whether it is the value of the Boolean variable whether the priority

inheritance is to be performed or not that 2 was indicated by the Boolean parameter. We

will see what is the what is meant by priority inheritance, but then they found that the

Boolean variable had set the priority inheritance of, and they could on their replica of the

mars pathfinder found that the problem can be solved if the priority inheritance could be

turned on.

And then they uploaded a short c program on to the mars path finder, and then the

unbounded priority inversion that was occurring could be tackled. In summary I can say

that the mars fight pathfinder was experiencing problem, because the solution to the

unbounded priority inversion in the form of a priority inheritance procedure was disabled

by the Boolean variable. So, the enabled the priority inheritance procedure, and then it

could solve the unbounded priority inversion problem.

(Refer Slide Time: 16:18)

Now let us see what are the solutions for the priority inversion and multiple priority

inversions, first let me ask this question that if we a task is a high priority task is under

go in priority inversion on account of a lower priority task, what is the longest duration

for which the priority inversion can occur, if you think of it we had actually a mentioned

it only few minutes back we had said that a single priority inversion can occur for a

duration that is bounded by the duration for which lower priority task needs the resource

n exclusive mode. Or in other words the maximum time for which a high priority task

can suffer priority inversion on account of a lower priority task. Is the maximum time for

which the lower priority task needs to execute its critical section.

(Refer Slide Time: 17:40)

Given that the time for which a lower priority task needs to use the critical section is the

time for which a higher priority task, suffers priority inversion can we solve single

priority inversion problem, through careful programming. The answer is yes we can

solve the simple priority inversion problem through careful programming, we can restrict

the time for which the low priority task uses its critical section. Each time there is a

consistent point, in its uses a critical section it is just releases the resource.

So, through careful programming the duration for which a low priority task needs to use

the non preempt able resource can be made very small. A simple priority inversion can

be taken care by careful programming, but we will see that the unbounded priority

inversion problem cannot be handled in similar way through careful programming. Let

us see how to solve the unbounded priority inversion, because this is the difficult

problem, simple priority inversion can be solved through careful program.

(Refer Slide Time: 19:21)

 The solutions to the unbounded priority inversion are called as protocols for resource

sharing among tasks.

(Refer Slide Time: 19:34)

The simples of these protocol is called as the basic priority inheritance protocol. This

proposed by Sha and Rajkumar 1990, the main idea behind the basic priority inheritance

protocol is that once a lower priority task is executing its critical section, it cannot be

preempted. So, the only thing that can be done is to make it execute as fast as possible.

The shortest duration where which can release the critical section the higher priority task

can be get to use the resource and the inversion time will be small, but how do we really

make a low priority task complete its execution as early as possible.

(Refer Slide Time: 20:40)

Given that the protocol is simple, the main idea is that whenever a low priority task is

executing make it complete, as early as possible. If you remember a low priority task

which was executing in the critical section was getting delayed by intermediate priority

tasks which was started to use the CPU, and the low priority task could not make

progress. So, the solution here is to raise the priority of the low priority task so, that the

intermediate priority task cannot preempted.

But then by how much to raise the priority of the low priority task executing its critical

section, let us try to answer that question by how much should the priority of a low

priority task once it is executing its critical section will be raised. The answer is that

make the priority of the low priority task as much as the task that is waiting for the

resource. And therefore, intermediate priority task cannot preempt this low priority task

any more.

(Refer Slide Time: 22:13)

In this basic priority inheritance protocol when a resource is already under use. A high

priority task that needs the resource makes the request and all the resources sorry all the

request are queued in the FIFO order. And the inheritance clothes is applied to each time

a high priority task requests a resource, and is waiting the low priority tasks priority is

made equal to the highest priority task, that is waiting for the resource that is the simple

protocol whenever a higher priority task, blocks for the resource.

The lower priority task inherits the priority of the highest priority task that is blocking on

the resource. So, this is an example here, low priority task holding the resource high

priority task waiting for the low priority task to complete uses of the resource, and the

priority of the low priority task is raised to be equal to the high priority task. So, that the

intermediate priority task cannot preempt the low priority task and this is called as the

priority inheritance scheme.

(Refer Slide Time: 23:46)

Let us look at some more details of the scheme the nifty gritty of the scheme here, once

the high priority task blocks for the resource, the low priority task priority gets raised to

the highest priority task in the queue. If there are 2 tasks which are waiting 1 is medium

priority, 1 is high priority for the resource then the lowest the priority task that is

executing using the resource gets the priority of the highest of these 2 so, which is H.

(Refer Slide Time: 24:33)

But then once the low priority task completes its uses of the resource, it gets back to its

older priority the low priority task again becomes low priority, its priority value changes

once it release the resource unless it is holding other critical resources. Critical section

and high priority task is waiting, it inherits the priority of the high priority task that is

waiting and as soon as it releases the resource, it gets back its original priority.

(Refer Slide Time: 25:15)

But then let us look at the problem it creates, and the problem it solves. It solve the

problem of unbounded priority inversion, but how does it solve unbounded priority

inversion problem it solved the unbounded priority inversion problem, because in the

inheritance clause. The priority of the low priority task is raised to the priority of the high

task that is waiting and therefore, the intermediate priority tasks that were preempting the

low priority task from CPU uses cannot do so and therefore, the unbounded priority

problem is solved. The intermediate priority tasks can no longer preempted and the

unbounded priority problem is solved.

(Refer Slide Time: 26:24)

This is just a representation schematic representation of the walking of the priority

inheritance protocol. Let us look at it a low priority task is holding a critical resource,

and the priority value is 5 that is a time instance 1, after sometime that is time instance 2.

A high priority task started executing and its priority level is 10. After sometime it

needed the resource and it blocked, because the resource is already being held by the low

priority task.

Started executing shown by green, but then its priority changed, because high priority

task is waiting the priority changed from 10 to 5 due to the inheritance clause sorry, once

it starts waiting its priority changes from 5 to 10, and it keeps n executing as high

priority task with priority 10, and then as it releases resource it gets back its on priority

value. We are at the end of this lecture we will continue from this point in the next

lecture.

Thank you.

