
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 12
Further RMA Generalizations

Welcome to this lecture. So far, we have looked at some basic aspects of real time operating

systems and then we said that real time scheduler, task scheduler is a vital part of the real

time operating system. And we have been looking at some of the real time tasks scheduling

algorithms. The event driven schedulers are sophisticated schedulers compared to the clock

driven schedulers and rate monotonic algorithm to be to for being useful in different practical

situations.

In the last lecture we are looking at the deadline monotonic algorithm, where the task period

and deadline are not identical. Today we will look at some more generalizations before

starting to discuss about some of the issues so far, we have simplified assuming that tasks are

independent and so on. They do not share resources. So, that under this simplified assumption

we have been discussing so far. So, that assumption will relax after discussing the rate

monotonic algorithm generalizations. So, let us get started.

(Refer Slide Time: 01:39)

 (Refer Slide Time: 00:43)

One important thing that occurs frequently in designing and implementing real time

applications is that some of the tasks which are very critical tasks, may not have the highest

repetition rate, or the lowest period. There may be other tasks which are less critical or maybe

non-critical which have high repetition rate and due to the rate monotonic priority assignment

which says that assign highest priority to the task that has the highest frequency of repetition,

or the lowest period; by that assignment even a very critical task may get assigned a low

priority and therefore, whenever a low priority task sorry low critical task gets delayed the

high critical task may miss it is deadline.

One simple solution to this is to just rise the priority of the critical task, but then that makes

the all the results that we discussed Liu Lehoskies etcetera become in applicable now let us

look at how to handle this situation. So, there are often situation where the task criticalities

are different from the task priorities and if we simply adjust the priorities and violate the rate

monotonic priority assignment then the results that we so far heard on rate monotonic

analysis would not hold.

To overcome this situation solution was proposed by Sha and Rajkumar in 1989. The name of

the technique is period transformation technique.

(Refer Slide Time: 04:11)

Let us look at the period transformation technique; the main idea here is very simple. A

critical task having high period long period is a split into many smaller subtasks depending

on to what extent we want to raise it is priority. If you want to really raise it is priority then

we split it into many subtasks such that; it becomes the new period becomes lower than the

other tasks.

Now, let us assume that we have a task Ti and we know that it is a highly critical task and

then we split it into k sub tasks. So, the execution time for each of the sub tasks become e i by

k. Where e i is the execution time for the task T i and d i is the deadline and the deadline for

each of these sub tasks becomes d i by k.

(Refer Slide Time: 05:47)

But one thing we need to understand is that we are not changing anything in the code the task

etcetera. This we are doing only for helping our with analysis without violating the rate

monotonic constraint so that we can apply the rate monotonic analysis techniques that we

have discussed so far.

We are just virtually considering the tasks to be split into k sub tasks, and then the priority of

this task increases and, but the total execution time of all the sub tasks together hard up to the

actual time.

(Refer Slide Time: 06:32)

Just to give an example let us say we have task T 1 whose period is 20 millisecond requires 5

millisecond execution time. The task T 2 has requires 8 millisecond execution time, but has a

period 30 millisecond. In the rate monotonic priority assignment T1 will be assigned highest

priority and T 2 a lower priority. Now assume that T 2 is a critical task and T 1is not so

critical. So, we want that even if T 1 gets delayed due to some reason, T 2 should not miss it

is deadline, in that case we split T 2 virtually into 2 sub tasks. T 2 a we can consider it to

which has one sub task which has high repetition rate, but low execution time so; that means,

the we have split T 2 into T 2 a whose execution time is 4 and deadline is 15 millisecond.

Whose execution time is 4 and deadline is 15 millisecond. So, the overall task characteristics

has not changed, it still it is 8 millisecond execution time every 30 millisecond. Only thing is

that for our analysis purposes we have assigned a priority to the task T 2 that is higher than T

1 and we have considered that the execution time is 4 and deadline is 15. And with this

assumption we can still apply the rate monotonic analysis results.

(Refer Slide Time: 08:49)

Now let us look at another issue which is handling aperiodic and sporadic tasks in the rate

monotonic priority assignment.

We had so far looked at only to periodic tasks. And based on their period we assign priorities

during that design time, but what if there are aperiodic and sporadic tasks. The aperiodic and

sporadic tasks they do not occur periodically rather they occur randomly we cannot really

approximate them to be periodic tasks with some period, because there can be bursts of

sporadic tasks, and once we get bursts of this task if you assign we have a assigned higher

priority to these tasks then the task that are lower than this priority would miss deadlines.

And also, when the sporadic aperiodic tasks do not occur then we are unnecessarily under

loading the system. To overcome this situation the periodic server technique has been

proposed let us look at the periodic server.

(Refer Slide Time: 10:26)

Before that let us look at some aspects of the sporadic tasks. So, there are 2 types of sporadic

tasks some are high priority for example, in emergency event like let us say there is a fire

detection reported and the task needs to be started to report fire conditions and also to start

the water sprinkler. So, this is a very random event occurs very rarely, but then this is a high

priority event.

It should not get delayed, but then there are non-critical tasks which can be sporadic. For

example, let us say logging of the results. So, this also once in a while need to log the results

and such non-critical tasks like logging results etcetera. They can be they can accommodate

some delay in execution they can tolerate long response times. So, during a over load

situation the background jobs can be differed, but for high priority tasks like emergency

events we should be able to execute in the rate monotonic framework and should be able to

high priority occurred high priority tasks.

So, that these meet their deadline a very bears way is to convert this high priority sporadic

tasks into aperiodic tasks. For example, if it is a fire alarm handling task then we find out

what is the maximum deadline that will be permitted in handling this task and then we

consider it to be a periodic tasks with the period is equal to the deadline that is acceptable, but

then there may be many types of such tasks many tasks which occur very rarely, but are high

priority.

And also, if we use this simple solution then there can be a design problem that we have the

system that is highly under loaded. Can we do can we handle this sporadic tasks in a better

way

(Refer Slide Time: 13:24)

Before looking at that the periodic sever technique. Let us look at first handling the non-

critical tasks which are the we call as background tasks. We can easily handle the background

tasks in the rate monotonic framework by keeping the real time tasks in a queue and apply the

real time rate monotonic scheduling under, and whenever there are no real time tasks high

priority tasks to execute the CPU idle and then we have another FIFO scheduler.

where the aperiodic tasks have been queued it just takes from the queue in a first in first out

and executes this low priority tasks and see that there is no guarantee when will this tasks

gets executed, but as and when the CPU becomes available the other high priority tasks are

not executed the FIFO scheduler becomes active and starts executing a aperiodic tasks and as

soon as periodic tasks come the aperiodic tasks are preempted. So, handling background tasks

in simple.

In addition to the rate monotonic scheduler we use a FIFO scheduler for handling the

aperiodic tasks.

(Refer Slide Time: 15:13)

Now let us see how to handle high priority sporadic tasks more efficiently. Then just

considering each high priority sporadic task as a periodic task with period is equal to the

acceptable deadline. First let us look at the periodic server a periodic sever is a high priority

tasks and it and handles multiple sporadic tasks, that have deadlines associated with them and

the period.

This periodic server is decided based on the different sporadic tasks that it handles the

assumption here is that the sporadic tasks occur very rarely. For example, fire handling events

and so on and therefore, a single periodic server can handle multiple sporadic tasks because at

anytime it is expected that only one or.

(Refer Slide Time: 16:36)

So, will occur but then we can also have a design where there are multiple periodic servers

where we have from design considerations we have clubbed. Different sporadic tasks with

similar characteristics into an assign them to one periodic server.

And another periodic sever handles tasks with different similar characteristics.

(Refer Slide Time: 17:09)

Considering the practical importance of the periodic servers lot of work has lot of

developments have taken place in the periodic server technique. There are static servers and

dynamic servers. The static servers as the name says they have static priorities dynamic

servers are have dynamic priorities and then we have the slack stealer which we had already

seen that whenever there is a slack time slack time the scheduler like a FIFO scheduler gets

active and executes any pending background jobs.

There are several types of static servers the polling server deferrable server priority exchange

and sporadic server. The sporadic server is the one which is supported the po6 real time

standard the polling server is possibly the simplest among them and we will discuss the

polling server in the next few minutes. The other ones the deferrable server priority exchange

and the sporadic servers are simple improvements over the polling server. So, we look at only

the basic concept here and if necessary you can read the text book that is we have we had

refereeing for the other types of static servers.

(Refer Slide Time: 18:58)

The polling server is a periodic tasks is a periodic task and it is assigned a priority according

to the rate monotonic algorithm and the period of this polling server is decided by based on

the characteristics of the periodic tasks. The sporadic tasks it handles, but then compared to a

simple server periodic server which is just keeps on repeating and even if there is CPU there

is no sporadic task it just idles the CPU time a polling server suspends itself. So, that the

other tasks can execute, but then if there are sporadic tasks during a invocation of the polling

server because the polling server is invoked. A time ts which is the period of repetition for the

polling server during any invocation there is a sporadic task then it serves up to es time. It

should be clear that the polling server has a period Ps and execution time es. So, during the

rate monotonic analysis we consider the utilization due to the polling server to be es by Ps.

(Refer Slide Time: 20:50)

Now the schedule ability analysis become easy when we handle sporadic tasks through a

polling server we just consider the polling server to be a task with execution time es and

period Ps, but then since un on every occurrence there may not be enough sporadic tasks to

run. The schedule ability of the other tasks which are lower priority than the polling server

become less.

(Refer Slide Time: 21:40)

Now, let us look at the schedule ability analysis how to perform we assume that the execution

time each c s or e s or it is the notation here used is c s.

Required every Ps time. So, the utilization due to the polling server is cs by Ps for all other

tasks it is sigma i equal to one to n ci by pi and therefore, the total utilization for all tasks

including the polling server is given by the left-hand side expression and if there are n other

tasks and 1 polling server then we have total n plus 1 tasks and in the (Refer Time: 22:41)

sorry the lui lay lands formula. We just use n plus 1 into 2 to the power n by n plus 1 minus 1.

So, as long as this is satisfied, then along with the polling server the other tasks will become

schedulable, but then how do we fix the deadline or given the deadline of the sporadic tasks?

(Refer Slide Time: 22:57)

How do we fix the period of the polling server? We use a very common intuition here that the

worst case for a sporadic event occurs just after if it occurs just after the time period of a

pulling server is over. So, the polling server was getting this slot for execution, but towards

the end of it just before it completes. The sporadic task occurred, now the sporadic task

cannot be served here in this time slot because it has occurred towards the end of this.

It can only be taken up in the next slot that the polling server gets which is after Ps time, but

then the polling server may not get the time at the time instance 0 from this period it may not

immediately get served. So, it will get served by the rate monotonic scheduler before it is

period Ps. So, it can be anywhere here and therefore, if the sporadic task a requires a

execution time which is ca and ca is less than cs then it can be served in one instance by the

polling server.

Therefore, in this worst case the deadline must be greater than 2 Ps because one Ps is just

missed here. So, only it can be taken over in the next period where it gets a time slot for

execution, but then there is no guarantee that it will immediately be taken up it may be taken

up towards the end also end of the period. So, the deadline must be greater than 2 Ps or we

can fix Ps as less than half the deadline let me repeat that.

To assign the period to the polling server we will look at all the sporadic tasks it needs to

serve. We find the task that has the lowest deadline and then we take half of that and the

polling server should have a period which is less than half the deadline of the sporadic task

having the shortest deadline. Since, we were running out of time now we will stop here and

we will look at few more issues before we look at the resource sharing among real time tasks.

Thank you.

