
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 11
RMA Generalizations

Welcome back. We were looking at the rate monotonic scheduler and we have looked at

some issues.

(Refer Slide Time: 00:23)

The schedule ability analysis and also looked at the tangent overload handling and so on.

Now, let us look at some specific points that we need to understand regarding the rate

monotonic scheduler. One is that how does the rate monotonic scheduler work with

harmonically related tasks.

We say that a task set is harmonically related if that if given that any task has higher

period than another task then it must be a multiple of the lower period task or in other

words if we take any 2 tasks in the task set Ti and Tk let us say and we find that the

period of Ti which is Pi is greater than Pk, then Pi is sum multiple of Pk and that holds

for every task in the task set.

Whenever we take two tasks if one task has higher period than other task then it must be

multiple of the other period. Just to give an example of a harmonically related task set let

us say for the p1 the task 1 the period is 10, for task 2 the period is 20 and for task 3 the

period is 60.

In this case you can check that if we take 2 arbitrary tasks t 1 and t 2, t 2 is greater than

p2 is greater than p1, but then it is a multiple of p1. If we take p2 and p3, p3 is greater

than p2, but again p3 is a multiple of p2. So, that holds for every pair of tasks. So, this is

an example of a harmonically related setup tasks and this is our special interest to us

because something very unique happens here. If a task set is harmonically related then

the schedule ability criterion becomes that the utilization even if the utilization is 1 still

the task set becomes schedulable.

Let us say, we have 10 tasks with task periods that are harmonically related and if you

use the Liu Layland criterion you will get something like 0.7, less than 0.7 utilization

task set will not be schedulable that will be the application of the Liu Layland to any

task. But, then here in the harmonically related task set even if the utilization is up to one

still the task set remains schedulable, but how do we show this.

(Refer Slide Time: 03:30)

Now, let us through a simple mathematics, let us show that any harmonically related

tasks set which schedule able under the rate monotonic scheduler as long it is utilization

is less than or equal to one how do we show it let us try the completion time theorem. We

know that the completion time theorem for every task set we must have e i and the time

taken for the task t i we need to check whether it is execution time plus the time taken for

executing all its higher priority tasks that arrive before it is period is less than equal to it

is period.

But, for a harmonically related task set we know that p i and p k are multiples of each

other. So, p i is a multiple of p k and therefore, we can get rid of the ceiling because it

perfectly divides is divisible by p k therefore, we can take out the ceiling and we can

write e k by p k, so, e i by p i.

So, we have divided p i by all through. So, we write e i by p i and sigma k equal to 1 to i

minus 1, e k by p k the p i had come out from the ceiling and therefore, p i is cancelled

by the division and therefore, we write e i by p i sigma k equal to 1 to i minus 1 e k by p

k is less than 1 or we can re-write this expression as i equal to 1 to n, e i by p i is less

than 1, less than equal to 1. So, by the completion time theorem we can show that as long

as the sum of the utilization of the task set is less than 1, then it will meet its deadline.

(Refer Slide Time: 05:53)

If we compare whatever we learnt about the rate monotonic scheduler and the EDF we

can see that the rate monotonic scheduler has lot of advantage. Its implementation is

more efficient in a multi level priority queue of course, the processor utilization is

slightly lower than the EDF and we will look at the context switches slightly more

context switches than the EDF and the guarantee test is slightly non trivial need to check

the Lius key or the Liu Layland criterion whereas, the EDF is simple utilization sum of

utilization is less than 1.

(Refer Slide Time: 06:45)

The rate monotonic scheduler is overwhelmingly popular, used in many applications;

space applications, advanced automation systems, large number of embedded

applications, even as influence the specification of the IEEE future bus and in time

critical applications the rate monotonic scheduler is used and is supported in almost

every operating real time operating system.

Now, let us look at certain rate monotonic scheduler generalizations because it does not

handle certain conditions the simple algorithm that we looked at, we need to have certain

other enhancements that will cater to these situations.

(Refer Slide Time: 07:42)

The first one we look at is the dead line monotonic algorithm just a small variation in the

rate monotonic algorithm and this we need to use when the task deadline and periods are

different. If you would have noticed in all our examples so far, we considered the task

period and dead line to be the same, but there can be situations in practical applications

where the task deadline and period are different for example, deadline may be less than

the period or dead line may be more than the period. Of course, dead line being more

than a period is extremely rare whereas, there are many cases where the deadline is less

than the period.

So, in cases where deadline is not equal to the period rate monotonic algorithm is not

really the optimal scheduling strategy for these cases the deadline monotonic algorithm

is optimal, but what is the main idea behind the deadline monotonic algorithm it is very

similar to the rate monotonic algorithm excepting that the priories 2 tasks are assigned

based on their deadlines rather than their periods. So, even if a task has higher period

than another task, but it has a lower deadline then that gets higher priority.

(Refer Slide Time: 09:23)

First let us answer this question that do RMA and DMA, Rate Monotonic Algorithm and

the Deadline Monotonic Algorithm both of them do the produce identical schedule under

some situations. With little thinking, we can say that if the period and deadline are the

same, then of course, the deadline monotonic algorithm it simplifies into the rate

monotonic algorithm.

But, for arbitrary relative deadlines where the deadline may be different from the period

they may produce different schedules. For example, even when the rate monotonic

scheduler fails the deadline monotonic scheduler may come up with a feasible solution.

But, on the other hand whenever the deadline monotonic scheduler fails the rate

monotonic scheduler will definitely fail.

We will not really look into the mathematical theorem proof behind this statement we

just assume at it is phase value, but then in the books that we refer proofs are available

you can go through, but for our purpose we will just use it at its phase value, that the

deadline monotonic algorithm can produce a feasible schedule when the rate monotonic

scheduler may not. Whereas, whenever the deadline monotonic scheduler fails the rate

monotonic scheduler will also fail.

(Refer Slide Time: 11:15)

Now, let us look at one example we have a task set consisting of 3 tasks T 1, T 2, T 3,

their execution time period and deadline is given. Now, we need to check for their

schedule ability using the rate monotonic algorithm and the deadline monotonic

algorithm. If you apply the rate monotonic algorithm the task T 1 is the highest priority

task. Task T 2 is the second higher priority and T 3 is the lowest priority task.

But, in the deadline monotonic algorithm task T 2 is the highest priority task because it

has a lowest deadline, task T 1 is the second highest priority task and task T 3 is the

lowest priority. This indicates that the priorities assigned to the tasks are different and the

difficulty here is that the results that we got for the rate monotonic analysis that is

completion time theorem Liu Layland criterion etcetera, would not apply to the deadline

monotonic algorithm because here the deadline assignment is different than the rate

monotonic algorithm.

(Refer Slide Time: 12:46)

But, then we can check it manually, so, you can check the Liu Layland criterion for the

rate monotonic analysis we find that it is un schedulable and we can do a completion

time check for the deadline monotonic algorithm and check whether all the tasks sets

meets their first deadline and we see that the task set is schedulable under the deadline

monotonic algorithm.

(Refer Slide Time: 13:23)

Now, let us look at another aspect which is also practically important is the context

switching. The context switching time for operating systems is substantial sometimes

compared to the small task execution times. The task execution times are of the order of

few milliseconds may be 50 milliseconds or 20 milliseconds, maybe 10 millisecond

whereas; the context switching time is typically 1 millisecond or so on. So, when we

have task deadlines and the task execution times so close, so comparable to the task to

the context switch times of the operating system we cannot really ignore them in our

analysis. But, then if we really want to include that in our analysis how do we do it? Let

us look at that point.

The crocs of our solution here about how to handle context switching in the rate

monotonic analysis is to consider the following situation that when do the task

preemptions occur and whenever task preemption occurs we need to consider the context

switch time. One task preemption can occur when there is a lower priority task running

and then there is a higher priority task which has arrived then the higher priority task

preempts the lower priority task and also when the highest priority task completes again

the lowest priority task resumes its execution.

So, there is again a context switch. So, in the worst case we can assume that each time

there is a task that arrives it may at most cause one context switch because the task that is

that may be running is context switched and again when it is on it is completion there

may be a context switch, but then as you can easily look thorough this that this is a very

conservative analysis because you are assuming that each time a higher priority task is

running sorry a lower priority task is running and higher priority task arrives and there is

a context switch, but we are over looking that sometimes higher priority task may be

running and a lower priority task arrives and there is no context switch, but then in the

real time systems all our analysis are conservative analysis. We look at the worst case

and do a worst case analysis.

So, from that point this is quite ok that we assume that whenever a task arrives it causes

2 context switches; one the running task is context switched and the arriving task is taken

up a running, in the second on completion of the task the one that was already context

switch resumes its run, so, there are 2 context switches for every task arrival.

(Refer Slide Time: 17:10)

And, once we understand that then the answer about how to take context switch

overheads becomes extremely simple. So, we assumed that each task instance that is

each job incurs at most 2 context switches when it is starts to run preempts the currently

executing tasks and when it completes. Now, let us assume that the context switch time is

constant see that is the worst case context switch time see let us say c millisecond.

So, we can take the effect of context switching by just adding 2c to the execution time of

every instance of the tasks. So, in effect we just transform our task set into one where

execution time of every task is increased by 2c, but then of course, you may agree or you

may argue that see the lowest priority tasks the never contest switches any task why do

we consider 2c for that? It can be 1c like nothing was running and it started to run may

be 1c, but then we are doing a worst case analysis and for every task we increase it by 2c.

(Refer Slide Time: 18:45)

So, this is an example we have a task set of 3 tasks T 1, T 2, T 3 and their execution

times are 10, 25 and 50 millisecond periods are 50, 150 and 200 and we assume that the

context switch time is 1 millisecond and we want to check whether the task set is

schedulable. To take the context switching time into account we need to increase the

execution time of every task by 2 millisecond. So, our new task set becomes 12, 27 and

50 milliseconds. So, that was 10, 25 and 50, it will become 12, 27 and 52.

(Refer Slide Time: 19:40)

So, we check whether 12 millisecond is less than 50 milliseconds. So, that is task T1 has

the highest priority find that it is schedulable. Similarly, we check for the second task 27

after taking 2 context switch the every execution instance. The higher priority task can

arrive at most 3 times. So, this is also schedulable for task T 3, we need to check that

fifty 2 millisecond after taking the context switching into account and it is too higher

priority tasks that take this is the execution time means period and therefore, it is also

schedulable.

So, considering the context switch time under the simplified assumptions that we

consider the worst case context switch time and also we will assume that every task

arrival for this 2 context switches. So, under that we can do an analysis for a practical

situ situation.

(Refer Slide Time: 20:54)

There is some practice problems please do it. One is, check whether the following task

set is schedulable we have T 1, T 2, T 3 different tasks with different execution times and

periods and we assume that the context switch overhead in the worst case is one

millisecond the effect will be to increase the execution by 2 millisecond. So, this will

become 11, 7 and 12, but what about the priorities of the tasks which task will have the

highest priority. So, we look through the period and find that T 2 has the lowest period

and that has the highest priority a priority one for T 2 priority 2 for T 3 and the lowest

priority for T 1.

(Refer Slide Time: 21:54)

Now, let us examine another situation, that what happens if task is extremely critical, but

then it is not the shortest task it is period is larger than some tasks, but this task is more

critical than the other tasks, how do we handle this situation? Because, in a simple rate

monotonic priority assignment we just assign priorities based on the frequency of

occurrence or the period of reputation and then, in that case the shortest period will get

the highest priority, but we know that some task with higher period has most criticality.

How do we handle this situation? Because, simply giving it a highest priority that will

make our all the schedule ability results unusable.

If a task period is 100 and we assign it priority one when there are other tasks like 20, 50

etcetera and they are given lower priority then all our Liu Layland, Liu (Refer Time:

23:18) criterion etcetera will be difficult to use. So, solution proposed by Sha and Raj

Kumar known as the period transformation method 1989. So, this is the standard

technique to handle situations where a critical task has a long period or its frequency of

occurrence is lower.

(Refer Slide Time: 23:51)

The main idea here is that we divide the critical task into smaller sub tasks. We do not

really physically subdivide, do not really take out the code and start dividing it is only for

analysis. So, what we do is we just consider its execution time and we want to split it

into k parts we assume that each part runs for ei by k and deadline di by k. So, if you

want to split into 2 parts, and the task execution time was let us say 50 and period was

100 we assume that it is actually 2 tasks. Each one execution time 25 and period is 50.

So, that way we have increased it is priority and still the Liu Layland and Liu (Refer

Time: 24:56) results become applicable.

So, the task splitting is done at a conceptual level rather than making change to the code

itself.

(Refer Slide Time: 25:11)

Let us take some example. Let us assume that we have 2 tasks T1 requires 5 milliseconds

for every 20 millisecond and T2 it requires 8 millisecond. Every 30 millisecond and T2

let us assume that it is the critical task. So, it should not miss dead line on account of the

T1 we need to keep a higher priority to T2, in that case what we do is, we assume we

consider that T2 consists of 2 tasks T2a and T2b each one having execution time 4 and

period of 50 and then we can use the rate monotonic analysis results.

(Refer Slide Time: 26:08)

The next question comes is that how do you handle aperiodic and sporadic tasks. If you

remember that aperiodic tasks are tasks that arrive randomly, but then they do not have a

deadline whereas, this sporadic task which arrive randomly, but they have some deadline

before we reach they must be complete.

If we give priorities to sporadic tasks then it would make our real time scheduler

unusable because many of the slots will go empty because this sporadic tasks arrives

randomly and it may lead to a situation where the system is cannot schedule the regular

periodic tasks. And, also the sporadic tasks may occur randomly in close succession and

therefore, it will make the lower priority tasks meet miss their dead line. So, the solution

to this is a aperiodic server technique.

Now, we are almost at the end of the lecture hour. So, we will just look at the aperiodic

server that is how to handle the sporadic and aperiodic tasks within the rate monotonic

framework in the next lecture.

Thank you very much.

