
Real Time Operating System
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 10
Rate Monotonic Analysis

Welcome to this lecture, if you recollect over the last few lectures we were looking at

some real time tasks scheduling algorithms. Initially we looked at simple event simple

clock driven schedulers and later we have been looking at event driven schedulers.

Initially we looked at the EDF and then we were looking at the rate monotonic scheduler

and in the rate monotonic scheduler we saw that the scheduling algorithm is really

simple. It is a preemptive scheduler and we need to assign priorities to tasks based on

their frequency of occurrence or their period.

And once we do that you can do some mathematical analysis to say that if tasks set will

meet it is deadline and we looked at 3 important results, the first is that utilization must

be less than 1 for a tasks set to be schedulable, but that was a necessary condition not a

sufficient one, but then we looked at the sufficient condition the Liu Layland condition n

into 2 to the power 1 by n minus 1. We looked at the expression and saw that the

utilization should be less than for a tasks set to be schedulable, but then you said that that

is a pessimistic condition because even if a tasks set fails the Liu Layland condition, still

it may be feasibly scheduled and then we looked at the Liu and Lehoczkys theorem and

we are trying to do some examples. So, let us start from that point.

(Refer Slide Time: 02:25)

One was that we said that the main idea behind the Liu and Lehoczkys criterion is that in

the worst case situation which occurs where all tasks arrive together, if the tasks meet

their first deadline then the tasks will continue to meet their deadline under all phasings,

if you recollect the exact wording of the theorem that if a tasks set meets it is first

deadline in the 0 phasing condition, then the tasks set will meet it is deadline in all

possible phasing’s.

And we are trying to check graphically whether tasks set will meet it is first deadline, but

that was bit cumbersome and we then looked at a mathematical expression, which will

tell if a tasks set meet it is deadline. So, the mathematical expression is given as for task

T i for a task T i the first deadline will be met if e i plus sigma j equal to 1 to i minus 1

ceiling of p i by p j into e j is less than the task period the intuitive idea behind this

expression, we had seen that whenever there is a higher priority task the task cannot run

it is higher priority tasks will run and the time for which the higher priority tasks will run

on 0 phasing that is the task arises in phase with it is higher priority task is given as

ceiling of p i by p j into e j.

For example if the task period is 20 and you have a high priority task whose period is 7?

So, then 20 by 7 ceiling will be 3. So, 3 times at most p j can occur within p I, which is

20 because they have occurred once at 0 once at 7 p j will occur and again at 14 p j will

occur and therefore, we can generalise that for any higher priority task p i by p j ceiling

into e j because each time p j the tasks j occurs it runs for e j time ceiling p i by p j into e

j, that is the time that will the higher priority task T j will run and that will have to be

considered for all higher priority tasks that is j equal to 1 to i minus 1. So, for every task

T i we need to check if this condition holds if this condition is for every task then we can

say that the tasks set meet it is deadline .

(Refer Slide Time: 06:23)

So, now let us look at some examples based on the Liu Layland and Liu lehoczkys

expressions, the first example we consider here is 3 tasks T 1 T 2 and T 3 and for T 1 the

execution time is 20 millisecond and the period is 100 e 2 is 30 millisecond period is 150

and e 360 millisecond and p 3 is 2 100 millisecond. By the rate monotonic analysis we

have to give the highest priority to T 1 because it is period is the shortest next high

highest priority to T 2 and T 3 is the lowest priority.

Now, let us check whether with this priority assignment of the rate monotonic scheduling

the task set will meet it is deadline.

(Refer Slide Time: 07:29)

The first thing we check is Liu Layland criterion we compute the utilization due to

various task and for the first task it is 20 by 100, 30 by 150 for the second 60 by 200 for

the third task and we get 0.7 and that is the total utilization due to the tasks. And we need

to check whether the Liu Layland bound is satisfied worth these and the Liu Layland

bound for 3 tasks is 3 into 3 to the power 1 by 3 minus 1. So, that is n into 2 to the power

1 by n minus 1.

So, if you simplify you will get the Liu Layland bound to be 0.78 and the utilization of

the tasks set is less than 0.78 and therefore, straight away we can say that the tasks set

will meet it is deadline the Liu Layland criterion is satisfied and the tasks set is

schedulable that we can infer.

(Refer Slide Time: 08:44)

Now, let us look at a different tasks set where the first is 20 millisecond execution, 100

millisecond is the period, second task thirty millisecond is the execution time 150

millisecond is the period and the third task is ninety millisecond is the execution time

and 2 and ok.

(Refer Slide Time: 09:23)

So, let us check the utilization. So, 20 millisecond out of period is hundred second task is

30 millisecond period is a execution time 150 and the third task is 90 millisecond and the

period is 200.

So, the utilization is 510 by 600 which is 0.85 and the Liu Layland bound for 3 task is

0.78 and this exceeds the Liu Layland bound and therefore, it fails the Liu Layland test.

So, according to Liu Layland it may not be schedulable, but then we know that Liu

Layland is a pessimistic result we need to check the completion time theorem of the Liu

and lehoczky to say that whether it is schedulable or not.

(Refer Slide Time: 10:30)

The first thing is let us look at the naive approach where we graphically plot whether the

tasks all the tasks meet their first deadline under 0 phasing conditions and if all the tasks

meet their first deadline under 0 phasing then the tasks set is schedulable. So, let us start

with task T 1, T 1 is the highest priority task and even if it occurs with T 2 T 3 T 1 will

run and it complete by 20 whereas, the deadline is 100 therefore, T 1 meets it is first

deadline. Now let us try for T 2 T 2 takes 30 millisecond and 150 millisecond is the

period. So, the first instance of T 2 must complete before, 150 millisecond and since T 1

T 2 T 3 T 1 T 2 occurs together first T 1 will run.

(Refer Slide Time: 11:49)

And has T 1 completes T 2 will be taken up and T 2 will run up to 50 millisecond and by

that time it will complete, but it is deadline is 150. So, well within the deadline T 2

completes because the next instance of T 1 will occur only at 100, now let us look at the

third task requires 90 millisecond and the deadline and the period both are 200

millisecond.

Now, let us again graphically plot. So, T 1 T 2 T 3 arrive together T 1 is the highest

priority that runs for 20 and then T 2 runs for 30 and at this point T 3 can start to run.

(Refer Slide Time: 12:46)

So, T 3 can run up to 100 because at 100 T 1 would again the T 1 instance will arise. So,

by that time T 3 would have completed 50 millisecond of execution and after T 1

completes again T 2 can execute and finally, T 3 executes and completes, but that is well

within it is deadline. So, the tasks set meets it is deadline we can graphically plot and

check both T 1 T 2 and T 3 all of them meet their first deadline now let us do it

mathematically.

(Refer Slide Time: 13:43)

So, again we have the 3 tasks 20 100 30 150 90 and 200. So, first let us check the Liu

Lehoczkys condition for the first task T 1 is the highest priority task and it will not be

preempted by any other task and therefore, it will run for 20 and it will meet it is

deadline because the dead line is 100. So, 20 is less than 100 and this ensures that T 1

would meet it is deadline.

Now, let us check for T 2 T 2 would need 30 millisecond and T 1 is it is higher priority

task there is only 1 higher priority task and that can arise 2 times, because 150 by 100

ceiling is 2 and each time that T 1 task runs it will take 20. So, we have written 20 into 2

and that gives us 70 and; that means, that T 2 complete execution by 70 millisecond

whereas, the period is 150. So, even in this case also the Liu Lehoczkys criterion is

satisfied. Now let us look at T 3 T 3 requires 90 millisecond execution time and it is

period is 200 and the task T 1 the highest priority task can occur twice, because 200 by

100 ceiling is equal to 2. So, 20 into 2 40 millisecond will be taken up by the highest

priority task.

Now the second highest priority task is T 2 it will also occur 2 times because 200 by 150

ceiling is 2 and each time T 3 occurs it will execute for 30 millisecond. So, the total

works out to be 190,which is same as got in the graphical sketching, but here these are

simple expression we can easily do it quickly without any mistake whereas, the graphical

1 is prone to mistake and also takes lot of time.

So, from now onwards all our examples we will use the mathematical expression directly

the graphical solution helps us understand how the Liu Lehoczkys criterion works the

main concepts behind the Liu Lehoczkys criterion, but to really work out the solution we

will use the mathematical expression. So, from the Liu Lehoczkys criterion we can see

that the tasks set is schedulable.

(Refer Slide Time: 16:55)

Now, there is a practice problem please do it on your own we have 3 tasks T 1 the

execution time is 10 the period and deadline both equal to 50 and the phase is 100

millisecond all are in milliseconds, the task T 2 execution time is 20 the period and

deadline in 60 and the phase is 0. And task T 3 the execution time is 30 the period and

deadline both are 80 and the phase is 50. So, please try this check the Liu Layland

condition whether it is schedulable and if it is not schedulable according to Liu Layland

then before concluding that the tasks set is not schedulable we need to try the Liu and

Lehoczkys criterion.

(Refer Slide Time: 18:01)

But just asking this question that suppose a tasks set fails the Liu Laylands criterion and

also Liu and Lehoczkys creiterion, then can we safely conclude that the task set is

unschedulable or is there a chance that the tasks set is schedulable. The answer to this is

that even when a tasks set fails Liu Lehoczkys criterion still it may be possible that it

may meet it is deadline, the main reason behind this is that in Liu Lehoczkys criterion we

check the worst case condition where a task arrives in phase with all it is higher priority

tasks, but then for a tasks set it may not occur the 0 phasing of a tasks with all it is higher

priority task may not occur and that is the reason, that it may fail the Liu Lehoczkys

criterion, but then it may still meet it is task deadlines, but then these cases are very less

where the tasks set fails Liu Lehoczkys test and still meet it is deadlines.

(Refer Slide Time: 19:28)

Now, let us look at some issues in rate monotonic scheduling, the first thing that we want

to check is about a very severe thing that we talked about in the in the EDF scheduling is

the transient overload. The transient overload if you remember we had said that

sometimes very low priority task like task result logging or some health monitoring

checking etcetera these are low priority tasks.

And if some of these tasks get delayed due to some reason than that may affect the

highest priority most critical task. If a lowest priority cannot affect the higher priority

tasks, then we say that system is stable under transient overload, but if the lowest priority

task when it gets delayed can also delay the highest priority task then we say that the

system is unstable poor transient overload handling capability which was true in case of

EDF. Now let us examine for the rate monotonic scheduling.

So, here we make a statement here that the rate monotonic scheduling is stable under

transient overload conditions the rate monotonic algorithm is stable under transient

overload conditions, but then how do we argue how do we show that it is really stable

can you think of something that will help us convince that the rate monotonic scheduler

the lowest priority task cannot make the highest priority task to miss it is deadline. The

answer is very simple, because here in the basic rate monotonic principle is that a higher

priority task will be taken up for execution when it is ready even when a lower priority

task is not completed.

So, it preempts the lower priority task there is no chance that a lower priority task will

continue to run when a higher priority task arrives and that conclusively shows that rate

monotonic scheduling is stable under transient overload, because whenever a higher

priority task arrives even when a lower priority task has not completed that will be

context switched and the higher priority task will run. So, the lower priority task must

yield the CPU to the highest priority task to the higher priority task and this is contrary to

what used to happen in EDF and therefore, this is a very positive feature of the rate

monotonic scheduling and it is course over the EDF algorithm as far as the transient

overload handling is concerned.

(Refer Slide Time: 23:06)

The next thing we want to discuss is that how is the rate monotonic scheduler

implemented? A very simple implementation without much thought can be to keep all the

tasks in a queue. So, in the queue as the tasks arrive we keep it at the queue and each

time either a task arrival or completion event occurs, we need to check through the queue

to see which task has a highest priority of the all the waiting tasks in the queue which

task has the higher priority, but if we analyse this situation then insertion when a task

arrives we keep it at the end of the queue and therefore, insertion time is one, but then on

each scheduling point that is on a tasks arrival or completion we need to check the entire

queue to find which has the highest priority among the waiting tasks and therefore, this is

O n.

If there are n tasks waiting in the queue not a very efficient solution, but what about a

priority queue a priority queue can be implemented based on a heap I think you know

that a heap can be implemented on array and we use a array data structure to have a heap

and in the heap the insertion is log n, if you look at the heap algorithm inserting an

element into a heap is O log n, whereas the highest priority task can be obtained easily

and that is O 1, but can see that this is a better solution than a linked list more efficient,

but then still it is not good enough because at each scheduling point we need to if a task

arrives we need to insert that task in the heap which is log n, can we do better yes we can

use a multi-level feedback queue and this is 1 which is actually used in the operating

system implementations of a rate monotonic scheduler.

(Refer Slide Time: 26:13)

The idea here is that we allow only a fixed set of priority a little later after a few classes

we look at the po6 real time standard and will see that the number of priority levels that

are available is typically 16 and in some cases we will see that it is 32. So, if we have a

fixed number of priority levels then we have a queue here. So, priority 1 if it is assigned

to a task each time that task arises we insert it in the queue and after it completes we

keep it waiting and until again the task period is over we insert a phrase instance here

and that we do for all task priority levels.

So, if you check here the insertion is O 1, but what about selecting the task on a

scheduling point the selection is also O 1 because we need to check from the highest

priority task and check if there is a task in any of these queues.

So, if there is any task in a queue starting from one the scheduler look through and in

whichever queue it finds that there is a task waiting at the front of the queue it just takes

it and that is O 1 and since there is a limited number of task levels and therefore, it just

needs to look for up to certain limit and therefore, both insertion into the task queue and

also getting a task from this both are O 1 a very efficient implementation and therefore,

as we discuss the real time operating system implementation we will see that the rate

monotonic scheduler is typically implemented with a multi-level queue and all real time

operating systems.

They support real time tasks scheduling through the rate monotony scheduler by

providing a fixed set of priorities at this point getting closed to the time we will stop

here.

Thank you.

