
Problem Solving through Programming In C
Prof. Anupam Basu

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 08
Variables and Variable Types in C

So, we are looking at a sample C program.

(Refer Slide Time: 00:18)

And as we had discussed in the last lecture, we have a structure as is shown here. You

can see that there is a main function here a main function is there, and that main function

is covered by two parentheses. Now, we can see that we start with the header file that

includes stdio dot h. An stdio dot h stands for standard IO.

That means, whenever we will get some instructions to carry out input or output that will

be in reference to or with respect to the standard input that is a keyboard; that means, the

data will be taken from the keyboard. And if anything is to be printed it will be printed

on the screen. So, that is a default thing for any C program we have to put in stdio dot h

include hash include, this is known as this is read as hash include stdio dot h. Unless you

want to take the file do not want to take it from the keyboard or do not want to print on

the screen.

Next thing is that the main function which as I said in the last class that there must be a

ma main function. And the main function will have a place for the parameters, you can

see here for the parameters here which may or may not be empty. The third point is the

structure the overall boundary of the main function of for that matter for any function

there should be a boundary specified, and that boundary specified with by this to curly

brackets.

Next we come to the statement. As I had said that just like any other language c also has

got some words which are understood by any by the compiler; print if is one such word

which is the statement for printing the sentence that is given within these double quotes.

You can see that double quotes here and so, what will it print? It will print our first look

at the C program here as his shown here that will be printed.

Print f within quote here there is a quote n quote and here is a start quote our first look at

the C program. In addition there is I am sorry let me go up, we can see to special

symbols which are these backslash ns right let me just clear it out, here you can see this

backslash n something of the sort. This means go to a new line or end of line now

suppose.

(Refer Slide Time: 04:09)

Let us see suppose I am I had something like this I had printed something all right I had

printed something this is a screen, I had printed a brown fox. Now after I printed; that

means, a computer printer you can see where my pen is my pen is lying here right my

pen is here. Now if I say backslash n this is no radar backslash, backslash n; that means,

my pen will come to the beginning of the new line and here I will write our first C

program, and by default my pen is here, but since I have given another backslash n the

pen will come here.

So, next time if I again start with the backslash n it will come to the new line, and if I do

not give a backslash n it will continue from here. You will understand this more when we

look at more number of programs, it will be much more clear to you. So, this the

structure of a very simple C program we will see more of this.

(Refer Slide Time: 05:39)

Now, here is a another program. Again now it is easier to understand you have got an

includes t d i o dot h which has to be there for any C program, there will be a main

function as is being shown here, and there are parenthesis between these two the program

should be written, there is a boundary of the main function. Now here there are some

more new things which are being shown to you in the form of example.

So, you see the first line is int a, b, c what is meant by that is that I am I will be using in

this program 3 variables a b and c and each of them is of type integer. Now you are

already acquainted with the term variables, but you are probably not acquainted with the

term type of a variable.

(Refer Slide Time: 06:50)

So, quickly let us go to that, we have got variables and the variables can be of different

type, also constants can be of different type for example, the variables can be of type

integer for example, 7,17 all these things 256, 1999 all these are integers. Another type of

variable can be real numbers which are say 10.5, 6.325 fractional numbers right these are

real.

This is also known as in c as floating point numbers. Now integers are these reals of flow

floating point numbers of these. Similarly I can have characters like say x y p whatever

these are different characters or maybe and is a character. So, each of any of these

alphanumeric and all those can be characters now. So, we know what is an integer, what

is a real what is a floating point, what is a floating point what is a character.

(Refer Slide Time: 08:51)

Now, a variable is of type integer, what does it mean? As you know a variable is nothing,

but a memory location right it means and suppose this variable I say variable a is of type

integer. So, there is a memory location corresponding to a and this memory location can

only hold values which are integers. So, 57 I can store here, but if I try to store 57.5 here,

it will not store 57.5, because it has been told to be an integer.

Similarly if I say variable b is of type floating point, I am in short I am writing float; that

means, this variable b can store a floating point number. So, 57.5 can be stored here.

Even if I try to store in b 57 in b if I store 57 just 57 then that will be stored as 57.0 all.

Similarly there can be types of characters. Now depending on the type of the variable the

compiler assigns different sizes of memory for the different variables.

(Refer Slide Time: 10:50)

For example in standard c compilers and it is a convention that for an integer two

memory locations are allocated.

Now, how big this will be say sometimes it is my each of these memory locations can be

16 bits, in that case I am using 2 16 bits; that means, 32 bits to store an integer whereas,

for a real number. Now this is a convention, 4 locations are used for storing a real

number. So, 64 bits 16, 16, 16, 16. So, that will be for real numbers now. So, depending

on what I write, what how I define the type of the variable when I say a b c I also say

what type of variability; is it an integer, is it a real or what it is.

Now, if you come here we will see that here I have written float and I did not write

floating point number. Now in c in order to specify variable to be real we declare that to

be float say p q; that means, semi colon; that means, p and q are two variables which are

of type floating point number right and if I write int a b c; that means, a b and c are 3

variables, which all of type floating integer type int. So, we do not write integer we just

write in c int. Now obviously, then for p how many bytes how many depending on how

many bits will be given how many memory locations will be given for p may be 4, q it

will be 4, but for a b c it will be only 2 all right.

Now, let us therefore, go back to the program here, here we find int a b c now this

statement this is called a type declaration all right this is known as a type declaration this

is the first statement. So, I have declared the variables now in C program before the

variable is used it should be declared about its type. The other thing is you can see this.

So, here you can see a has been assigned 10, b has been assigned 20; that means, what.

That means in the memory location a corresponding to a memory location corresponding

to a 10 has been written, and to the memory location corresponding to b 20 has been

written all right and this statement c assigned a plus b, I had explained in another lecture

that; that means, this data this value 10, and these value 20 will be taken out on the from

the left hand side from the corresponding memory locations they will be added and the

result will be 30 all right; the result will be 30 and the 30 will be written into the location

c. So, this will be 30 this much is clear.

Now what about this line? I know that a print if statement just tells me that I have to print

whatever is there in the quote. So, how will the print look like? Please note the sum of

percentage d and percentage d is percentage d this is equivalent to writing this.

(Refer Slide Time: 15:38)

The sum of dash and dash is dash there are 3 gaps, one here, one here and one here now

how will these gaps we filled? They will be filled by the values of a, b and c respectively

each of these dashes will be filled up by the respective values of a b c. Now this

percentage d is a format statement is saying that this gap can be filled by a digit or by an

integer.

This gap can be filled only with an integer. Now here I a is an integer therefore, this gap

will be filled with the integer value 10 and percentage d, and it is being printed as it is

because it is within this double quote and dash. this dash will be filled with another digit,

and what is the digit? The second space b and b is 20. So, it will be 20 is what is a plus b

is c and what is the value of c c the value of c is 30.

So, this is what will be printed all right. So, this is how we print a sentence, where I want

I have got some places for different variables and these places will be filled up by the

values of the variables, whose names are being specified here. I repeat this gaps will be

filled by the values of the variables whose names or whose identifier are been specified

here and the type of this variable, and the specification of this dash should match. Now, it

will be printed sum of 10 and 20 is 30; now coming to the third sample program.

(Refer Slide Time: 18:13)

Now, this is a little more complicated, and this is trying to find out the largest of 3

numbers; that means, what we had done in a flowchart exercise finding the max of 3

numbers. Now that was discussed using flowcharts and pseudo code and here we are

discussing that using a program a C program how is that idea translated into C program.

Again let us start with even before that I would like to point out something, again let us

revise the structure of the program, we start with header stdio dot h, now we start we put

in a comment what is this? We saw in the last class it is a comment this comment is just

telling us the compiler has got nothing to do with, it is just telling us that this program

finds the largest of 3 numbers.

Then as usual we have got a main function which must be there and there should be a

parenthesis which is delineating the boundary of this program. Now for and also we have

seen this, I am using 3 variables a b and c and I have put in the type of that. The next new

thing that is coming up is here scan f, this is an input statement for reading 3 variables

from the keyboard. Now recall that I said that for every language there are there is a

vocabulary, there is the set of words that the language understands.

So in c, in an earlier one we have seen in an earlier program we have seen the statement

print f right we had seen a program print f. So, print f is a particular word, now we now

encounter another word int is also another word; int is another word which specific to c

and the meaning of this every word will have a meaning. So, this means that whatever

follows are variable names of type integer. Whatever follows this word int are variable

names of type integer.

Next, new word that we are getting is scan f. Just like we had seen print f earlier all right

print f is a word, that tells us that something is being printed here scan f is an int is a

word that tells that whatever is inside this parenthesis is a input statement. Now let us

study this a little bit here. Here again you will see that there is a percentage d percentage,

d percentage 3 percentage ds within quote and that percentage d means it is a specified

for an integer, some integer is being will be that scan f means say assume it is really.

(Refer Slide Time: 21:47)

So, therefore, it something like this, I am going I am creating as if 3 places, because

corresponding to each percentage d, percentage d, percentage d, percentage d within the

quote, I am creating 3 spaces and followed by that let us go back to this, I am sorry here

there should be no comma all right; I am just giving 3 percentage ds.

(Refer Slide Time: 22:21)

So, let me go back here. So, it should be within the court here is scan f, within quote

percentage d blank percentage d blank, percentage d and the quote is closed comma; that

means, as if just to understand I am creating 3 spaces each of which I have ready to

accept an integer and where will those be stored? Here I am writing and a, and b, and c.

Now here I will request you to just forget about this ampersand sign forget about this for

the time being this will explain a little later.

Just assume that a, b and c, but before that for any read statement will have to put an

amperesand before the variable names there is a reason for that. What is the meaning of

this sentence? The meaning of this sentence is that there are 3 places which are ready to

hold 3 variables, which will come to the locations a b c; when I am reading as if I am

reading from the user 3 variables a b c ok.

Now, why I put that amperesand will explain a little later. So, 3 space have been created

and what are the spaces? These spaces are nothing, but these 3 memory locations which

3 memory locations whose names are being specified here all right. So, this is something

that you have to be a little careful and practice a little bit it will be very easy later on. So,

within the quote I specify the format specify that is integer in this case percentage d and

this other variable names.

Now, let us go back to that anything that is new here. Now a new word we are

encountering here, if is a conditional statement you did not bother about it, if you recall

we had in the flowchart we had a thing called diamond right where we are taking some

decisions based on some conditions yes and no right. We are doing that here we are

looking at some condition here if a is greater than b and a is also greater then c, if that is

yes then I am printing that a is the largest number. Try to apply simple logic here, if is a

conditional word condition is a conditional word and this entire statement starting from if

to this semi colon is one statement, and where I check the condition whether a is greater

than b and a is greater than c.

If that is so, that is if the diamond comes out with that yes, then I am printing that the

largest number is a. Otherwise, that means if the answer to this is no otherwise I am

again checking again if again I am checking another condition, I am checking another

condition here what to do I what my checking? Is b garter than c yes if yes then I am

printing the largest number is b otherwise is yes, otherwise if it is no then I am painting

the largest number is c.

So, we are encountered in some new words if and else. If means if in the diameter result

of this diamond box is yes then this statement will be executed otherwise; that means, if

the answer to this diamond box is no, then this part will be executed. Now here again the

second block I am checking if b is greater than c, again if this is true for this condition

this will be executed when this condition is true or yes if it is false then this statement

will be executed. So, it is a little more complicated program, but a very useful example.

(Refer Slide Time: 27:30)

So, we see the comments we have already mentioned, now you are coming to another

program.

(Refer Slide Time: 27:32)

This is using what we earlier had said that a big machine can we divide into sub

machines. So, big program this one is not a big program, but any programs can you

broken down into different functions. Here is the main function this one is main let me

draw it a little nicely. Here we have got a main function and inside there is another

function whose name is my function I am sorry.

Now, let us look at this, now first here there is another new thing we are introducing and

that you should understand that is define PI to be 3.1415926; that means, this verified in

this program this PI will appear, there will replace it with this value 3.1415926, but

inside the program I will not right PI, I am just defining it once for all and this means I

am replacing pi by this value before the compilation is done. So, this is again a p

processor statement.

We will continue with this example in the next lecture.

