
Problem Solving through Programming In C
Prof. Anupam Basu

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 61
Dynamic Allocation and File

We have looked at pointers and structures in detail and we have also seen how structures

can also utilize pointers or in other words how pointers can be used in conjunction with

structures. Now, we look at another very interesting use of pointers, but in general let me

say that it is a very fundamental concept, from the memory allocation point of view.

Dynamic memory allocation is what we will be discussing now. Now, when what is

when we say that is dynamic memory allocation then; obviously, there must be

something called the static memory allocation now what is static memory allocation?

(Refer Slide Time: 01:07)

When we declare an array say int A 20, you know that the compiler will allocate 20

locations, 20 locations to house 20 integers to you and that will be named as A or you can

also consider that there is a pointer A, which is pointing to the first element of the array.

But you have got 20 space for 20 locations 20 integers allocated to you.

So, now, you know size of. So, how many bytes will be required? You can say 20 times

size of int. So, size of int will return you how many bytes your particular system

allocates for an integer and 20 such allocation. So, so many bytes will be allocated to

you. Now when that is statically allocated that is allocated at compile and compile time;

so, when we say static allocation that means, allocation at compile time right.

Now, if for some reason you need more than 20 integers to be stored in this array A that

you will need to redefine this whole thing or in some cases we do not know we do not

have an idea of what will be the how many date data items will come for example, you

was you are actually storing student data’s student records in an array class, and you do

not know how many students will join that class beforehand.

If you have if you know that beforehand its fine or if you have an idea that what is the

maximum amount maximum number of students that can come, then its fine you can

allocate it in the form of static allocation as we do in an array.

(Refer Slide Time: 03:57)

However, when we do not know and the information comes at a runtime; that means,

when is being executed, that will lead to what we call dynamic allocation of memory that

is dynamic allocation. So, let us look at how we can handle it.

(Refer Slide Time: 04:23)

So, the basic idea is I have already explained that the amount of data we cannot predict

beforehand. So, we will use effectively whose dynamic memory management, memory

allocation technique to do that.

(Refer Slide Time: 04:36).

Now, C language requires a number of elements to be specified in compiled time when

we define in an array we need to specify that in compile time. Now, often that leads to

wastage of memory or program failure why program failure? Program failure because if

we exceed the amount of space that has been allocated, there will be a failure the

program will give an error or it will exit abnormally. However, if we take recourse to

dynamic memory allocation, we can solve this problem how? Memory space required

can be specified at the time of execution how can we do that, how can I specify the

amount of memory required at the time of execution?

If while running the program, just like the instructions and operators if we had some

special means some special command, some special operator by which we can grab

memory. Now here you should understand that who allocates memory to us it is the

operating system who allocates the memory to us.

So, this like the print f, scan f all those things are system calls we are calling the we are

making calls to the operating system, which is doing the required thing for us similarly

there is a function called Malloc Memory Allocated, mMalloc using which we can grab

memory from the operating system how let us look at this say.

(Refer Slide Time: 06:25)

In memory in C, I have got different types of variables I that is not so, much relevant

right now what is needed is part this global variables and instructions are there always

told.

(Refer Slide Time: 06:37)

But the local variables are kept the local variables are there and there is some free

memory. We can take from this free memory and put it use them as our local variables

when free region is has got a name heap.

(Refer Slide Time: 07:09)

Now, the most important thing is that we need some functions, which will give the

memory gave my program some memory addresses or memory blocks from the

operating system storage of memory, which is known as heap from there it will come to

be allocated to my program all right.

So, for that we have got four different functions one is malloc what does malloc do?

Malloc allocates the requested number of bytes and returns a pointer to the first byte of

the allocated space. So, what it does is something like this, what is happening? (Refer

Time: 08:31). Malloc allocates a requested number of bytes and returns a pointer to the

first byte of the allocated space. So, let us try to explain this.

So, when I do mallco, malloc is just like a function will return me some memory bytes

all right some memory bytes how many memory bytes will depend on, how what I am

what I am requesting for? It is a requested number of bytes. So, malloc will have some

parameters which will show later.

So, it will give some give me some amount of memory and how do I know? Now, the

operating system has got some free memory spread here and there. So, from there it is

giving me some piece of memory, but how do I know where is that piece of memory for

that, it is returning me a pointer say pointer p which is telling me that this if you follow

this pointer, you will get this piece of memory location all right. So, let us proceed a little

bit.

(Refer Slide Time: 09:46)

Now, similarly now when this is given that memory block is given in response to malloc

request, the actual memory is not initialized to some value it can have any garbage value.

But if I apply calloc; calloc then it allocates space for the array of elements, array of

elements and initializes them to zero and returns a pointer. So, in this case if I want to

have a chunk of memory where everything has been initialized to zero then I should use

calloc on the other hand this free what it does the free function call will return this

amount of memory, that was given to me in request to malloc it will be returned back to

the heap returned back to the operating system so, that it can be utilized by somebody

else in future all right.

So, and realloc modifies the size of the previously allocated space. So, I have got some

allocation and then I think that allocation is not enough I want to change it I can use

realloc. However, we will be mostly concerned with malloc and free in our discussion.

(Refer Slide Time: 11:14)

So, a block of memory can be allocated using the function malloc and it reserves a block

of memory and returns a pointer of type void. You know every pointer has got some type,

but in this case with malloc returns some memory block the pointer that it is returned is

of type void, but then we have to do something what we need to do? I know why I

needed this memory I need. So, accordingly I will have to do that typecasting all right.

So, now the return once it returns me of type void, but that return pointer can be assigned

to any pointer type. So, here you see.

So, here please note malloc has got a parameter byte size how much memory I want,

how many bytes I want. Now this malloc has returned me up to this, it has returned me a

pointer and pointer is of type void, but I type suppose if this amount of memory I want

for the purpose of storing integer array then this type will be int star; that means, I am

casting this what is malloc returning? Malloc is returning a pointer some pointer, but that

pointer was of type void of type void. Now when I am typecasting it to int star, then this

void is no longer it is of type is becoming of type int and then I am assigning it to

another variable p t r.

So, think of two things, first of all you have to decide on how many bytes you want

accordingly you do malloc and then what type of data you want to store there. So,

accordingly you do this typecasting like int star, float star, char star whatever you do and

then you assign it to a particular pointer let us see how it will work. So, let us look an

example. .

(Refer Slide Time: 13:55)

Here how do I know how many bytes I need? Suppose I need to store an element an

array of 100 integers. So, what I do here is I ask for malloc 100 times size of int size of

int if it is 4, if int is 4 then I am getting 400 bytes.

Now, these 400 bytes that have been given to me is being pointed we by some pointer of

type void. So, next I make it int star and put it to p. So, p is now an integer point integer

pointer that is pointing to this entire block of 400 integers.

(Refer Slide Time: 14:49)

So, a memory space equivalent to 100 times the size, we have got. So, here 400 bytes of

space and p is a pointer pointing to the beginning of this. So, I have sorry I have got this

just using malloc, it was not declared beforehand.

Now so, this 100 can also be a variable n if I read a particular variable n now how many

students are there scan f m and n. So, I read the number of students, then I can multiply

that with n as well ok.

(Refer Slide Time: 15:35)

Next you see here I am initializing to I am I am seeking memory for 20 characters, I do

malloc 20 because I know a character takes one byte and then the pointer is of type void

I am typecasting it to type character char star and assigning it to c p t r. Now it is actually

wrong it is allocating 20 bytes of space for the pointer.

So, structure stud now for example, I now need. So, integer character was simple now I

want to have for space for the entire structure students, now that size is larger. So, I do

not know. So, I just have employ this function size of struct stud. So, I gets how many

bytes it requires say 40 bytes and say 10 such for 10 such students or n such students I

multiply with that I get so, much memory, now I have to typecast that to struct stud star

and that goes to a as a structure pointer.

(Refer Slide Time: 17:00)

Now, malloc always allocates a block of contiguous bytes. Now, it may be that sufficient

suppose you are asking for 100 bytes and 100 bytes are not available then malloc will not

be able to allocate you the space, in that case malloc will return in null that is a null

pointer that is a special character special value it will return, that shows that I could not

allocate a space.

So, I could not allocate it to you a valid pointer. So, it is a null pointer meaning thereby

that I could not I failed in allocating you memory.

(Refer Slide Time: 17:44)

So, here is an example here you can see let us look at from one side I n float is a pointer

height is a pointer of type float sum is 0 and average. So, what I am trying to do probably

I am trying to find the average height of the class. So, input the number of students and I

am reading ampersand. So, this one is ampersand n. So, this is n number of students.

Now, see I did not know how many students are there. So, I am getting this number of

students here, I am getting n number of students here. Now I want to have so, many

spaces for the height. So, what I am doing? I am allocating n number of spaces n is a

variable here and size of float whatever size of float is 4 bytes. So, n times 4 bytes so

much space is being allocated, and the pointer is height is a pointer of type float.

So, this pointer is being type casted to float all right then I get the input scan f in a loop, I

am getting the heights one after another in an array and I am finding the sum of the

heights finding the average of the heights, where I am dividing sum which is a floating

point number with float n here is another example of typecasting. So, you see I am

dividing by n, but this is a floating point real number n was an integer. So, I convert it to

float and convert it divided right.

So, this is how malloc works now. So, we have we have explained that.

(Refer Slide Time: 19:43)

So, now how do we are allocating space? Similarly the general format for freeing space

is using by using the free function. So, general now suppose I have got a space allocated

to me, some space is allocated to me and that space the only handle to that space is to the

pointer p.

So, I free that pointer, I free p. So, the pointer is freed; that means, this pointer is freed

means this location this amount of memory goes back to the storage of the operating

system and that is the heap.

(Refer Slide Time: 20:30)

(Refer Slide Time: 20:32)

So, we whatever we got in malloc; so, that gives us some idea about how we can get

space and reallocate space.

(Refer Slide Time: 20:36)

Now, briefly we I will be talking for the next 5 or 10 minutes on file handling; there is

not much to understand about file handling thus you will learn as you do. Now, what is a

file that is something you have to understand. File is something where wherever I want

to write something write or read from.

So, I want to store something I will take a particular file all right; I will take a particular

file and I will open that file and then I will write in the into that file then close that file

and then whenever I need in that way I may have 10 files.

Now, at a particular point of time I want to read a particular thing. So, I choose the

particular file what do I do next? Open the file and read the file. Now, some files may be

allowed to be read by others, some files can only be written in to and not read from,

some files can have the option of read or write both.

(Refer Slide Time: 21:55)

So, file is some space where I will be writing or reading from some storage.

So, this is there in the secondary memory and what till now whatever variables we are

talking about, those who are all in the primary memory. So, if I store it in a file it goes

into the secondary memory. So, let us have a little idea of how files are handled.

(Refer Slide Time: 22:18)

So, now again now we have learnt pointers. So, any file can be accessed using a pointer.

Just as if I have the file of income tax all right. So, I will have a pointer that there is the

file of income tax, here there is some file of road tax it will be here some file of your

salary it will be somewhere here, some file of your expenses it will be somewhere else.

So, there will be pointers. So, we use in c the sorry we use file star we use file star to

represent pointed to a file and if open is the command for opening a file. If a file cannot

be opened then it will return a null just as in the case of malloc, we saw if nothing could

be returned it was returning a null.

So, here for example, you see f p t r is a pointer of type file. That means, f p t r will be

pointing to file. Now, I have got a character file name is an array file 2 dot dat it is a data

file. So, fptr is f open file name and here when I do f open I give the file name as well as

the mode in which it can be opened the mode in which it can be opened and this w means

it is in the right mode. So, what have I done here I have called f open.

So, I am trying to open the file if the f. So, this f open will return up file pointer now if

this file pointer is null; that means, there was some error in file creation otherwise it will

go on doing something ok.

So, quickly let us look at this, when I do f open it will open a file and will open it in a

particular mode read or write whatever I specify and it will return me a pointer. If a file is

created successfully it will return me a non null pointer all right.

(Refer Slide Time: 24:38)

The second argument of f open is the mode and there are three modes there are three

modes. R is the file is opened for reading, w means it creates a file for writing and writes

over all the previous contents. So, if I open it in the write mode whatever content was in

that file is erased. And a opens a file for appending; that means, whatever is there after

that it will be added ok.

So, if you have got something already stored and you do not want to destroy that, and

you want to add something more to that you will open it in the form in the mode a all

right. And rb reads a binary file raw bytes we need not bother about that.

(Refer Slide Time: 25:25)

And there is a function called exit which you have seen, that exit for sometimes in the

emergency we can put exit minus one; that means, it tells that I have exited the function

without success.

(Refer Slide Time: 25:38)

Now, here you see use of exit file f pointer character file name is an array, file 2 dot dat I

tried to do something. So, the file pointer was null.

So, if it be null then what can I do? I will have to exit because of some reason the file

could not be created so, that apart.

(Refer Slide Time: 26:02)

So, f open we have seen f print is a very important command f print works just like print

f and s print f except that the first argument is a file pointer. So, we will see how it

works. So, fptr is again the file pointer and I have opened the file dot dat in the right

mode. Now, if print f means now I am printing where am I printing a file called file dot

dat has been opened.

The name of the file is file dot dat and how do I identify it? I identify it with the fptr the

file pointer ok. So, I am writing it is a open in the right mode. So, it is everything

whatever was there has been erased. So, I am writing just as you have been done print f

then automatically by default it goes to the screen here it is not default here I have said

fptr.

So, whatever I write hello world it will be written in this file not in the screen all right.

(Refer Slide Time: 27:27)

Screen is another file, but that is a default file. Reading a data similarly we printed using

f print f reading we can do using f scan f forget about that part look at this fptr I am

reading from not from the keyboard now. I am now not reading from the keyboard, I am

reading x and y two integers from a file which is pointed out by f p t r all right and what

is that file f p t r? I have opened the file input dot dat.

So, you see in that file input dot dat 20 and 30 was written and so, f scan f I have read

that that was input dot dat, from I have opened that in the read mode in the read mode

and I am reading from there. So, I am getting x to be 20 and y to be 30 not from the

keyboard, but from the file.

(Refer Slide Time: 28:21)

So, in that way we can now here are some powerful commands just to know, we can read

a string using if gets from a file I can read a string. So, here you see a file is f p t r and a

line is of size 1000, while f gets line is not null; that means, I am getting from f p t r, I am

getting a value and if it is not null; that means, it is not the end of the line.

I mean I have got the file is open I am reading the line using f gets all right I am getting

the line f gets takes three arguments what are the three arguments its taking a string a

maximum number of characters 1000 and a pointer from it returns. If there is an error

such as end of it end of file EOF is end of file.

(Refer Slide Time: 29:22)

Now, this I think you can understand much better when you use, now when we open a

file after that we must close that file we can simply use a command f close and the file

pointer. So, here you see f p t r I opened the file in the right mode, I have print written

hello world over here f print f means saying I am printing in the file, and then I am f

close I am doing f closing the file by f close f p t r all right. So, here it is opening and

here is access and here is closing.

(Refer Slide Time: 30:01)

Ah We have got you have seen that s t d in s t d out, where two special cases of files

which are default files and s t d error was the printing of the error.

(Refer Slide Time: 30:16)

So, here is an example program you can see that main f print f s t d out give value of i ;

that means, where am I printing this? Here I am printing it to the standard output I am

reading I from the standard input. Now, f print f I am writing that the value of i is

whatever value of i read. So, and there is no error ok. So, give value of i it will first main

give value of i you give 15, then f print f that I then it will say value of i is 50 is equal to

15 and there are no error, but an example to show error message.

So, if you do this std error then you can if there is an error. So, for example, my I am

returned I am being returned a null pointer in that case I can use some output s t d error

and say the file failed to open the file that sort of message.

(Refer Slide Time: 31:31)

So, now another thing I will just talk about here, that will come in very handy to you that

is say for example, must have you must be running the programs and you after you

compile the program and link them you are creating an executable file, which is a dot out

right dot slash a dot out now usually what you do? You have got the dollar those of you

using Linux shell a dot out right and return.

Now, this a dot out in that case dot slash a dot out what it is expecting? The input from

the keyboard s t d in and the output is going to std out, but I do not want that I want that I

have got a file I have got a file where my input data is there.

(Refer Slide Time: 32:28)

And I call that in dot dat and I have got another file which is known as out dot dat. I want

that the input be taken from this.

So, I want a dot out to read the data from here and the result should be written here I can

do that in the unix environment very simply by this redirection operation you see, a dot

out will run taking data from in dot dat and sending the output data to out dot dat.

(Refer Slide Time: 33:10)

So, say for example, in dot dat has got 15. So, I do that and the program runs and says

give the value of I, think of the earlier example earlier program that we are thinking of

give the value of i and it means the it reads from here and it prints the value of i is 15.

So, that is coming this whole thing is coming in out dot i.

So, let us once again look at this thing here instead of std out dot here I am asking, them

to give the value of i is being given and that is being scanned from the input file and this

is being written on the output file. So, in the output file both these things are being

written; consequently, you see what am I getting is I will be getting this output this is my

output out dot dat and in dot dat there are two files.

So, this in this way you can use files for storing data you have to open the file let me

summarize a little bit you will have to open the file if you want to read a in the read

mode, read the file from there read the data from that file, do the operation, open another

file in the write mode and write the data into that file. Thereby, whenever you require

some file operations, you can easily do that and this is one example that we have shown

which is very common when you during running your programs. If you store some data

in a particular file and read from there and write into another file you can utilize this sort

of structures this sort of commands.

So, thank you very much; I think you have got an overall idea of how to write c

programs and programs and solve problems using programs because our the essence of

our course was to solve problems through c programming.

So, you should choose different problems and you should try to write commands sorry I

will try to write programs for solving those problems. So, first you have to find out the

proper algorithm, and then write the C code for that you have learnt everything about

basic things about the C programming, I have not touched upon some special features,

which you can also learn from the book like static variables and all those I have left out

intentionally.

So, that you are not overloaded, you can solve it, you can the more you run the programs

using the basic concepts that has been taught you will be a good programmer and most

importantly you will be able to think logically like a programmer you will be able to

think of an algorithm, and you will be able to translate that into a program.

Thank you very much.

