
Problem Solving Through Programming In C
Prof. Anupam Basu

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 54
Recursion (Contd.)

So, we are looking at recursion and that is a new style of programming where we can

express the particular function in terms of itself like I can express factorial n in terms of

factorial itself factorial n minus 1 and n into factorial n minus 1 ok. Another very

common example of a and easy example of recursion is Fibonacci numbers, we have

already told you; what Fibonacci sequence is the Fibonacci sequence can be expressed as

f 0 Fibonacci 0th Fibonacci number is 0. The next one is also 1.

(Refer Slide Time: 00:57)

And henceforth, all other ones are sum of the previous 1; so, 0, 1, 1, 2, 3, 5, 8, 13, 21, so

and so forth. Therefore, we should be able to define it in terms of a recursive function

because you can see this function f and this function f are the same only variations are in

these parameters, right, I am expressing the same function in terms of these parameters.

So, the function definition will be is very simple f; intend some integer if n is less than 2,

then return n if n is less than 2 if it is 0 then 0.

If it is 1, then it is 1, otherwise what did you return; return f n minus 1 plus fn minus 2

sum of the previous 2 Fibonacci numbers. Now this is interesting because again if you

see how this will be computed, it will be first expanding what are the things I have to

compute and when it meets stopping condition then it starts collecting back and come

back.

(Refer Slide Time: 02:31)

So, how many times say if I say if I want to compute Fibonacci of 4 how many times

will that function be called let us look at the expansion of this. So, how will it happen

Fibonacci of 4 will be I want to compute Fibonacci of 4 is Fibonacci of 3 Fibonacci of 2,

these 2 should be added. So, I have not yet have found out anything, I am just

decomposing the problem ok.

There is a very very important concept that in order to solve the problem, I want to

decompose it into smaller sub problems for f 4, I have to solve it by solving f 3 and f 2

ok. Now for solving f 3, I have to solve f 2 and f 1, I further decomposed it. Now for

solving f 2 I have to solve f 1 and f 0 fortunately and for itself now the even now the

entire thing has not been broken down f 2, for that I have to solve f 1 and f 0. Now I have

expanded the whole thing.

Now, I know that f 1 is 1, f 0 is 1. So, f 2 will be 1 plus 1; 2, this is known all these

endpoints of this structure are known 1 0, 1, 1, 0, 1. So, I go on adding them and

ultimately, I will get f 4. Now it is in a way inefficient, but because the same thing is

being computed repeatedly ok, but it has it will make for to annex to a practiced

programmer, it will make your programming writing the program much more I mean less

line lines of codes if you can express it in much more better ways.

So, you can see here; how many times the function was called 1, 2, 3, 4, 5, 6, 7, 8, 9

times; 9 times the same function was called in order to compute f 4.

(Refer Slide Time: 05:02)

So, the code for the Fibonacci sequence will be; if now the stopping condition of the base

condition is very very important is very very important. So, if n is 0 or n is 1, then I

return 1, this is the base case, unless I reach at this point, I will not be able to compute

the entire solution.

Otherwise, return Fibonacci of n minus 1 plus Fibonacci of n minus 2 that is the code for

the Fibonacci number. Now I mean this sort of whenever I will have too many calls in

that case, I should be should avoid them as much as possible and. So, what is the

difference?

(Refer Slide Time: 06:00)

Between recursion and iteration in recursion, we have the repetition sorry in iteration it is

both reputation in iteration there is an explicit loop explicit loop for i equals 0, i less than

equal to n minus 1 i plus plus.

So, there is an explicit loop whereas, in case of recursion, it is a repeated function calls,

all right, termination iteration if the loop condition is no longer satisfied while this

condition do if that condition fails, then we come out of the loop. In the case of

recursion, the base condition must be recognized whenever we are getting the base

condition factorial one or factorial 0 Fibonacci of 0 or Fibonacci of 1.

So, those are the base conditions, both can have if wrongly program both can have

infinite loop. So, the performance wise iteration often gives faster result, but it is a good

software engineering practice to gradually get accustomed to recursion as you do more

and more programming, you will see that you will be able to express the things in a

much settler way.

(Refer Slide Time: 07:29)

(Refer Slide Time: 07:37)

So, whenever there is a performance issue try to avoid recursion, it will require

additional memory also there is a there is a particular type of storage that is required in

recursion that is known as stack. Stack is a last in first out type of structure.

So, those things, briefly, let me tell you; how this thing is done because stack is nothing,

but a structure where we can push in data from one side say I put say 5, first I push. So, 5

comes here, then I push 4, then I do n minus 1 3 is pushed, then 2 is pushed then n minus

1 again and 1 is pushed. Now when I take out the data, the data will come out as 1, then

2, then 3, then 4, then 5, in the reverse order ok. So, the 2 operations are push and

popped ok.

Popping out from the stack and pushing inside the stack.

(Refer Slide Time: 08:52)

So, this stack data structure becomes very handy for implementation of function

recursive functions, we will show some examples.

(Refer Slide Time: 08:59)

Like here for example, I want to compute the gcd of a b. Now typically what happens is I

call this city is computed I return ok.

Now, here when I call something I call something all the say; here was I; here I was here

my program flow was here I went in. So and when I went in all the local variables and

everything here was stored and I had to remember where I will be returning back. So, all

those things are stored in the stack and without a stack data structure, it is very difficult

to implement recursion and for that matter any function call.

So, you see here is a function and so, all those return address is stored before called this

stack was empty now after when its returning it is taking out from the top of the stack

and again I come to know where I was ok.

(Refer Slide Time: 10:09)

So, that is so, similarly you see here. It is a inches are a b; that means, n C r what you

compute n choose r, if I compute, then you know n choose r is factorial r divided by

factorial of n minus r or some people write it in this way by factorial of n minus r. So,

how did I do that? So, how can I implement it?

So, here n C r has been called from here factorial has been called and then where do I

return I return I have to come here ultimately I have to return here. So, I should not lose

the path. So, what the stack does is when I make the call first call then when I make the

call n C r.

(Refer Slide Time: 11:10)

Then the local variables here will be stored on the stack and again I make another call

from here. So, local variables are there, I am calling fact as I go in here, the local

variables here has stacked up and then when I return this part this part this part will be

taken out and passed on to this.

So, what happens is this part is as it returns this part is taken out and I am here, it can

again continue and then it returns when it returns here this part will be taken out this part

will be taken out .

(Refer Slide Time: 12:13)

This part will be taken out and. So, that is for normal function called how the stack

remembers where I should go back all right in the case of recursive calls what happens

what we have seen is activation record gets pushed into the stack when a function I will

call is made in recursion a function calls itself.

So, several function calls are going on with none of the calls are getting back. So, all the

activation records are collected. So, you need not delve into that too much let us see I

will.

(Refer Slide Time: 12:54)

Show it by an example of computing factorial. So, an activation record is the local

variables and the return value what the function should return and where it should return.

(Refer Slide Time: 13:11)

So, that with that say the main function is calling fact 3, I will track them and here is a

fact n if n equal to 0 return one otherwise n times fact n minus 1.

(Refer Slide Time: 13:28)

So, main calls fact. So, when it calls the value is n equal to 3 there is no return value

return address is in main I am remembering that next again fact is calling itself; so, now,

fact is calling fact 3 is calling fact 2 and my return address is fact. So, you see it has been

stacked up next fact 2 will call fact one so that is what the stack is growing and if its

return is in fact, all right.

Now, next time, it will be fact 0. Now the returned value till now, there was no return

value. Now the return value is 1 and return addresses fact. So, as I do that I return, then I

have got a return value because now I have come to this point. So, 1 into 1 will be 1 and

I am returning to fact, as I return the stack will contract and what is the return result? 2

times 1 that is 2 that is a factorial 2 and return I am returning to fact. So, I return again,

now I am coming to the last time in the fact with n equal to 3 that started here.

So, and the result is 6. Now I returned to main. So, at every stage look at this, I have I

know I remember from where I started and from where I am returning back nothing is

lost using this stack. So, stack is a very interesting data structure, that helps us in many

ways, especially in implementing things like recursion and although.

(Refer Slide Time: 15:26)

So, one assignment that I am leaving to you do it yourself, trace the activation record for

the following version of Fibonacci. Please note down the code include stdio dot h in def f

is the Fibonacci function a and b if n is less than 2 return n if it is 0 then return 0.

If it is 1 return 1, otherwise a is fn minus 1, b is fn minus 2, I have done it in a different

way, fn minus 1 and fn minus 2. So, if n minus 1 has to be solved separately and fn

minus 2 should be solved separately, then we will return a plus b all right and then the

main will print. So, just as a fun you try to draw the activation record of this version of

the function, please note it down, take some time and note it note down this function and

you see on this side I have shown.

How the activation record will look like local variables, you can see n a and b return

value you have to keep whether it is in Fibonacci or in main either in main or in x or y,

what is x and what is y this is x and this sorry this is the there is an problem in this I am

drawing it again. So, you see this; this is x, this is x and this is y, alright not these 2 these

are not these are not aligned properly, all right.

So, either where do I return and here is the return to the main either a return to main or to

x or to y and what is the return value draw the activation record of this and then, we will

see how much you could do it I am sure you will be able to do it and because. So, today

we have learnt a new style of programming that is recursion and also we discussed in the

last class. So, recursion is a type of writing functions where the function calls itself and

that makes many functions to be written much more. Secondly, much more subtly and

that is a very good software engineering practice although as a beginner.

If you find difficulty in that; you need not bother too much about it, you have got

iteration at your disposal and you can solve most of the problems with iteration

practically all the problems, you can do may be in some cases, it may be a little more

difficult to write, but ultimately it is will be possible ok. So, if you find difficulty with

recursion, you can set it aside for the time being, but we have to discuss it because that is

a very nice way of writing functions, we will continue with the concept of structures in

the next lecture a new thing will be introduced that is called structure ok.

Thank you.

