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We were talking about errors and round off errors and percentage errors. Now, I will

briefly  show  you  that  if  we  commit  an  error  how  that  error  continuously  gets

accumulated and ultimately has a much larger effect.
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For example, suppose the exact value suppose the exact value of some variable the first

instance is 10 all right. And suppose no sorry suppose the exact value is 9.9 8 and we

compute 10 all right. So, the inherent error first the error actually is 0.0 2 right.

Now, as we go on iterating suppose x 1 is 10 times X 0, then the exact value should be 9

9.8, but here we will get 100 ok, I will say suppose it is 100. So, you can see that the

error has increased to how much 0.2. Now if the next iteration X 2 is again 10 times X 1

then it will be 9 9 8 whereas, the computed value will be 1000. So, the error is becoming

2.



So, you see how with if we start with an inherent error how that error accumulates over

time? Ok. So, we can say a very important term is relative accumulation of error, which

is accumulated error accumulated error divided by exact value for that iteration.

For example in the first iteration it was the error accumulated error was 0.0 2 divided by

the exact value which was 9.9 8, but later on it became 0.2 divided by 99.8. So, this is

this was 0.0 0 2 0 0 4, but whatever that is that is not that important I do not want to

confuse with you with this.

Now there are some cases where this accumulation of error actually goes on increasing

ok.  If  the  rate  of  accumulation  error  decreases  if  the  rate  of  accumulation  of  error

decreases  or  if  the  rate  of  accumulated  error  increases,  but  the  rate  of  relative  error

decreases, then we call it a stable algorithm.

However, I am not going into the details and the intricacies of this, but this is just to give

you  an  idea  how the  error  propagates  through  iterations.  And  so,  we  must  be  very

conscious about the rate of increase of this error all right.
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With these words we move to the algorithm which we are planning to discuss in this

lecture that is a bisection method.
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I have already told you that the bisection method is given a particular function some

function, on this x and y axis if I have some function that moves, in this way then we

start with any two points any two points arbitrary points here and maybe here, now these

two points will not do. 

Because if  I  select  these two points  then both of  them are positive  so,  that  if  I  had

selected this point for example, these two points x 0 and x 1 that would not have served

my purpose because I do not know where the root is there or not.
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So, I would rather select two points, which are of opposite signs and therefore, I know

that somewhere in between the root lies. So, I will take the midpoint of this somehow

here if this point is negative then I will keep the positive fixed and I will find out the

value of y. So, these two are opposite signs. So, the root must be somewhere here.

So, in that way I come to this one and find out the value of the root here in that way I go

on dividing it till I come very close to the root as is being shown here very close to the

root.  Now how close that  will  depend on my decision that  is  the basic  approach of

bisection method.
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So, with that let us try to have a look at the algorithm, therefore, first we start we define

the function we define the function F X and get the value of the interval A B that is there

is a function. So, here there is a function and the function can be long enough. So, I take

the limits that I have to find out the root within this interval a and b and I find out how

much error is required. So, how much error is acceptable.

So, this error is the allowed error is the epsilon that I was talking of and also the number

of iterations the number of iterations,  because it  may be that in some case I am not

finding the root, because I am going on looking at say for example, this sort of scenario

and my a is here my b is here.
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Then; obviously, the root does not lie between this. So, I will go on doing this bisection

and again doing this bisection how long will they go on, but still I am not I will not find I

mean it may be that I will not find the root therefore, there is a maximum limit that is

kept number of iterations.

Now I initialize I to be 1 some I just some index to be 1 and then I call a subroutine or a

function bisect the midpoint; that means. So, here is a sub subroutine bisect what it does

here is a subroutine you see what it does or a function? What does it do here, it finds out

between A and B the midpoint and increments the iteration and prints the value of X 1 X

1 is a middle point.

So,  if  my function  was like  this  and this  was a  this  was b,  then the root  mass  lies

somewhere here I find out the midpoint of this. So, this becomes x 1 to be there is a next

1 and how many what is the iteration? Next is F; that means F mid less than 0.
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So, there can be 2 things all right here I select this to be my b and this to be my a. Now;

obviously, if I take the midpoint then the midpoint will  be somewhere here, a and b

where of different signs. If F mid is not less than 0, then a should be x; that means, I will

now move it on this side and try to find out this should be this should be the next a and

between these 2 I will have to find out. And every time I am trying to find out whatever

value of F X that I compute is it less than the absolute error if yes then x that is I am

getting my solution otherwise I am going on doing this.

So, this is a flow chart of the whole thing, but I think you will be more interested in

looking at the algorithm and let us look at the algorithm for a second and the program

here is algorithm you see this is much more understandable to you.
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I start I read x 1, x 2 and the error here x 1 and x 2 are the initial guesses all right. Here is

my thing I have taken this is x 2 this is x 1 is absolute error; that means, how much error

is permissible, compute F 1 that is FX 1 compute for this function this value and if 2

compute this value all right. If f 1 and f 2 the product of these two is greater than 0

greater  than  0;  that  means,  my initial  guesses  are  wrong,  because  both  of  them are

positive, then I can do many things I will instead of going to 11 my initial guesses are

wrong I will again ask for new guess all right.

So, I take a new guess and I find that that is less than less than 0 then I take in this step x

1 plus x 2 mid of that. So, suppose mid of that is this 1 and that is becoming x, if x 1

minus x 2 by x actually here it should be if I think it is wrong here it should be if fx 1,

minus fx 2 please read this as fx 1 now the error, fx 1 minus fx 2 divided by x is less than

e then display x; that means, if my error between these 2 between these 2 points the

val[ue] difference is less is 0.0 0 0 2 and that is I just wore that I can assume as 0 then I

will display this particular value of x.

So, right now it is not the case otherwise I will make this f to be fx I take this all right.

Now between these two I again divide I come here and in this way I go on alright. So,

you will be able to write the program as the program runs. So, just to show you I am sure

you can write the program yourself how can you translate this in the form of a code.
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So, here you see let us try to understand this code it is a C program for the bisection

method, I have included a st stdio dot h math dot h and there is some function, because I

have to find the root or of a particular polynomial.

So, for example, here it is given this is a polynomial. So, what is this polynomial it is x

cube minus 4 x minus 9. So, that value of fx has to be continued computed. So, the

function is the fun is the name of the function, then there is another function bisection

this function performs and prints the result of one iteration.

So, it is a plus b by 2; now in an earlier lecture we had talked about this what is this

because here when I am calling this function, I am calling by reference how? I am calling

I am just passing the address x and whatever I do here once again is a part of revision

you can see if I come here float star x; that means, what x is there some variable and I

have just passed the address of that.
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So, star x is the content of this say 50 all right. So, I passed it on and in the main function

I am passing on the address of x ok. This we have seen earlier. So, I am taking the

midpoint and incrementing the iteration; iteration is also a call by reference. And float a

float b are two points in between which have been passed on. 

Now, what is being done in the main function? In the main function I am setting the

iteration to be 0 and here I am saying how many iterations are permitted?
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Maximum number of iterations x, a, b allowed error how much error is allowed and sum

x 1 value is given into the values of a b allowed error and maximum iterations. So, all

these I read the range a and b between, which points I have to do a and b and how much

is the allowed error and what is the maximum number of iteration? Then with this I call

bisection what do I do bisection and x; that means, this will be give me the midpoint I

will call bisection here a b iteration.

So, a is being passed here, b is being passed here, and the number of iterations is being

passed here. Now here I am finding the midpoint and that midpoint is being returned

here is common right, and then here at this point I find out I call the function that is I am

computing the polynomial.
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If  the  polynomial  at  a  value  of  the  polynomial  at  a,  and  the  volume  value  of  the

polynomial  at  x  there  is  a  midpoint  is  less  than  0.  So,  what  happened this  was my

scenario here was a and here was b, now let me draw it.
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So, here was b and here was a. So, now, what I do I got the meet point somewhere here,

then the value of the function at this point and the value of the function at this point a

negative. Therefore, I move this b to x all right x is becoming b and I do the same thing.

Otherwise if it was on the other side I would have made x to be a alright this clear and

then again I call bisection. After calling bisection I find if the absolute error of x 1 minus

x is less than the allowed error, then I will print the root.

So, this will go on while iter this is under this do while this will go on until I exceed the

maximum iteration. So, this is how I code and all of you should be able to practice this

yourself ok. Next we will move to another algorithm another algorithm, which is that

another method, which is known as the Newton-Raphson method.



(Refer Slide Time: 20:18)

This method adopts a different approach to find the root of the function let us try to

understand this briefly.
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So, I have got a function like this; now Newton-Raphson method, what it does at it starts

at some x 0 and the corresponding value of the function at x 0 is f x 0, now what it does

it finds out the tangent at this point tangent to this point. So, what would that tangent be

that tangent is nothing, but f prime x 0 ok, because we know that is f prime means d if a

d f x d y dx.



So, I draw the tangent here the tangent intersects the x axis at some point. Now I take the

x 1 this let this be the value x 1 I drew the tangent and got the value x 1 ok. I come here

and from here, since the value here f x 1 at every stage have to check whether the value

is close to 0 or not; obviously, this is not the case.

Therefore, I draw another tangent from here and what is this tangent this tangent is f

dashed x 1 derivative at this point. So, this becomes x 2, now I find out f x 2 now I again

compare whether f x 2 to is very close to 0 or not still it is not the case. So, I draw a

tangent from here to this I am sorry I should have made it dotted as I was doing at all I

draw a tangent at this point. 

So, this is x 3 and I find out if x 3. Suppose this value f x 3 is very close to 0 suppose this

is within my allowed error, then x 3 is the root otherwise if it was not there from here

again I would have to draw a tangent in this way it goes all right.

So, this is the essence of Newton-Raphsons method. So, what are you doing here we are

taking a function starting with a point and finding a tangent to that curve to the function

at that point and see where that far that tangent intersects the x axis from there I find out

f x 2 and then I go on doing this. So, I think this geometric geometrical exposition will

be very helpful to you. So, next let us try to see how Newton-Raphson method works.
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So, at every stage x n plus 1 is x n minus f x n by f dash x n why because of the simple

reason that I had this curve I had this curve and this was my x n all right from there I

drew the tangent. So, this was f x n and I drew the tangent here, then if I divide this and

my subtracted from here I will get this x n plus 1 here. 

So, you see it is coming in the other way alright because at every stage I am computing

this next here x n is  the current known value of x f x n represents the value of the

function, f dashed x n is the derivative of the slope at that point x n plus 1 represents the

next x value that you are trying to find.
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So, this expression is coming from the fact that f x by d x, where d x is delta minus x

therefore, the term f x by f dash takes is actually the value of d x how much the d x value

sorry the x value; that means, how much I should count down.

So, you can see from this expression f x by f prime x is f x by f x by delta x; that means,

the delta x actually this is the delta x part and; that means, how I am shifting this x. So,

the x was here and I am shifting it by delta x and coming here again shifting it by delta x

coming here like that I am going all right.

So, suppose fx let us take an example here suppose fx was x square minus 4, then f prime

x is; obviously, 2 I x and x 0 was 6 suppose I assumed x 0 to be 6. So, here is how it goes

first iteration x 0 is 6 fx 0 here f x 0 is supposed 32 32, because 6 squared 36 minus 4. If



prime x is what if prime x is 2 x that is 12 if prime x is 12, then x plus 1 x n sorry I am

sorry this is x n and the next value will be next value will be x n; that means, 6 minus 32

by 12. So, whatever that is I subtract and I get they 3.3 3 next iteration I come to 3.3 3.

So, it was something like this that I started with 6 and then I moved to 3.3 3. So, you see

it  is converging very fast 3.3 3, then at 3.3 3 the value of fx 1 is 7.0 9 here if  you

compute this the derivative will be twice of this that is 6.6 6 derivative is 2 x 6.6 6 if I

subtract this 6.6 6 divided by 7.0 9 subtract it from 3.3 3 is 2.2 7. So, my dx is 1.0 6 I go

on like this and ultimately I come to a dx of 0.0 I assume.

So, next time it is 2.2 7 I start with that again find the next value to be 2 2 point instead

of 2.2 7 it will be 2.0 1 and with 2.0 1 I compute and gradually you see the dx is coming

down as the dx is coming down; that means, I am approaching the actual root. So, this is

Newton-Raphson method and we can very easily code it.
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So, here is an example now you can see this it starts with 6 goes to 3.3 3 then from the 3

here is a little animation 3.3 3; I am coming to 2.2.7 then from 2.2.7, I am coming here

and gradually the error is that it is not increasing. So, it is very much converging. So, I

get the solution with 2.0 1 and I get the solution.
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So, quickly the algorithm will look like this again I will read x the a maximum error

allowed number of iterations and d d is the checking for checking the slope, here are the

comments x is the initial guess absolutely that is e n is the number of iterations.

So, do in a loop i to n in steps of 2 f x f is equal to f x and then f 1 is f prime x. Now

these are 2 functions, which you have to write and if the now why is why am I keeping

this check? Why am I keeping this check? f 1 which is a slope if f dashed x is too small;

that means, what that the slope is nearly horizontal; that means, I am not going to get any

suppose something is something like this. If I come to this point and try to find a slope of

this the slope will be very horizontal.

So, this is not a good choice in that case I have to reduce it and come to a point, where I

can find a slope all right. Now, in that way I go on and find the whether the it is coming

to the close to  the root and go on.  Now, if  it  goes on the iteration  goes on say for

example, it is possible that I am missing the loop coming close to that say a curve like

this.
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The slope of the curve was such that I was trying to come here and somehow I miss the

root I go to another point. So, that is another special case I need not bother you with that

right now. So, let us have a quick look at the program the program will be again.
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So, here we are trying to find out the root of a function x log log x, the function is x log x

to the base 10 minus 1.2. So, that is the function that function is embodied in another C

function. Now d f is returning d f is nothing, but f dashed x.
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So, if this function is given I also keep f dashed x written. So, this is f x this is f dashed

x. Now I know I have already pre coded them and that will return me the value for

different values of x.

So, now again I read as scan, f i read the initial x 0 the allowed error the maximum

iteration. Now, then in this loop what I do I find fx by f dashed x and that is h how much

I should reduce, how much I should change the initial value? The initial value was x 0

with which I started I subtract that and come to the next point.

And if the absolute error is less than absolute value at that point if absolute at that point

is less than error then that is a solution. Otherwise, I will go up and repeat this. Now if I

go  on  and  ultimately  if  I  overshoot  the  maximum iteration,  then  I  can  say  that  the

required solution does not converge or the iterations are inefficient.

So, Newton-Raphson usually gives us a very fast way of finding the root, but sometimes

it  does not converge and that is one problem of that;  however, there are many other

sophisticated ways of finding roots just to summarize I would like to say that what we

have  learnt  in  the  past  couple  of  lectures  is  that  one  of  the  major  technological

requirements a computational requirements are finding roots of polynomials for many

solutions for many engineering solutions, I have to solve equations. 



For that there are many methods we have just gone through to simpler methods one is the

bisection method and the other one that we saw just now is the Newton-Raphson method.

Next we look at something else called interpolation and other things.

Thank you.


