
Problem Solving through Programming in C
Prof. Anupam Basu

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 40
Parameter Passing in Function Revision

So, we had looked at parameter passing and we have looked, we have seen that the

difference between call by value and call by difference and we have see quite a few

examples to be specific 3 examples on call by value how. And also another thing that was

supposed to be noted I hope you have noted that, that is the scope of variables. That

whenever there is an x in the main function and the x in the called function then these

two x’s are different. The x that is defined in the called function is a separate location

than the x in the main function and that the life of that variable ends with the end of the

function, right.

(Refer Slide Time: 01:15)

Now, let us look at these example, you yourself will be able to trace this. So, I give you

some time to trace this through and then we will continue. Look at this function carefully

and do not look at this green part, do not look at the green part yourself and try to

without looking at that try to find out what the values will be for the different printf

statements.

Let us start. So, we have got x assigned to 10 and y assigned to 5, x and y, x is 10 and y

is 5. Now, so when the I printf do this printf x is printed to be 10 y is printed to be 5 fine,

no issue. Then I call a function interchange x y. Look at this the type of this function

interchange the type of this function interchange is void because that immediately tells us

that it is not going to return anything it is going to do something as the name implies it is

going to interchange x and y. And what are the parameters? Parameters are x and y this is

the argument. So, here I have got another set of x and y.

Again note that this x and y are different. Now I initialize temp, so temp is another

variable here temp. Now, what I am doing here? The first printf what is being done here

printf x equal to x and y equal to y which x and which y the x this x and this y. Now,

when I entered this function these values have been copied here. So, the printf will

simply print 10 and 5 no issue now temp is getting x, x was 10. So, I put 10 here and

then x assigned y sorry y assigned x; that means, the value of y I am still within the

function I am within the function. So, this value is being assigned. So, by this statement

what happens this becomes 5 and this remains 5 right and then what is being done here y

assign temp; that means, this temp is becoming 5 right temp is becoming sorry, sorry I

am sorry absolutely sorry this was 10.

Now, for this statement temp is going to y; that means, y will be changed to 10. So, here

I find 5 and 10. So, it is a when it entered here I could see 10 and 5 and so when I come

and print from here x will be 5 and y will be 10, I come out of the program and printf x

and y. What will be printed? My god, what I find is x is being printed as 10 and y is

being printed as 5 as it was here. So, no change has actually taken place. Why did it

happen like this? You can immediately see the reason that whatever change took place

took place here inside the function and this actually tells you the importance of the scope

of variables. These variables scope ended with this function and their change was not

reflected in the main here that is why although I did it here it would not change.

However, suppose let us do some intellectual exercise here.

(Refer Slide Time: 06:43)

Suppose x was 10 and y was 5 and there was a temp, now temp is inside the function. So,

I will use different colours for that I will, now although I remind you that C does not

allow call by reference, but just to see whether you have understood call by reference

properly. Suppose we are allowed to use call by reference then my main program has got

this x and y. So, it comes here prints say prints x and y. So, 10 and 5 are printed x equal

to 10 y is equal to 5 and it calls interchange all right, it calls interchange.

And suppose just suppose that this call has been done by call by reference. So, what has

been passed here? The address of this and the address of this not the values, so no other

copies have been made. So, now, I have got the local variable temp and here I do temp is

assigned x. So, temp gets 10 then x assigned y. Now, what is my x and what is my y? The

content of this address which have been passed will go to the content of x. So, this will

be 5 and then y will be assigned temp. What will happen?.

This temp this value will go to the suppose I can make call by reference then this will go

to this address, but if I just simply write in this way that does not mean it really does not

tell me whether I am saying that I am copying the from the address of actually copying

the value, but I am just taking telling a hypothetical case. So, this 10 will go there and

this 5 would be changed. In that case when I come back from here and I print here then I

would have got the change scenario reflected, but the mechanism writing simply like this

in C means it is called by value not called by reference. So, what is being passed is

actually the value.

So, if I could, if I could do that then it was possible to have that interchange and there is

a mechanism for passing the addresses and not the actual values by using a concept

called I mean structure called pointers which are nothing, but addresses we will have to

we will see that later if time permits. But in general remember that this interchange has

not been possible by call by value in the way we wrote the program. So, with this we

complete our discussion on parameter passing normally, but a distinction between

parameter passing by call by value and call by reference.

(Refer Slide Time: 11:23)

And we now start another very important point that is passing arrays to functions.

(Refer Slide Time: 11:45)

Now let us try to think. Here when we were having a variable x another variable y in the

called function, in the caller function and I was having in my called function two other

variables a and b, then the value of this would be copied here and the value of this was

copied here. But suppose x is not an integer x is an array of 20 elements then all those 20

elements have to copy here and suppose this is an array of another 20 elements, so

another 20 elements I have to copy here right. C allows only for arrays the parameter

passing by difference. Now in order to understand that let us try to look at the structure

of an array.

(Refer Slide Time: 12:56)

Suppose I have got an array a 10 now I am not making a distinction between the size of

the array actual size of the array and the dimension of the array I am assuming that the

array a has got 10 elements. So, I have got 1 2 3 4 5 6 7 8 9 10 all right and these are a 0

a 1 a 2 up to a 9, right these are the locations we know that. We also know that an array is

allocated contiguous memory locations by the compiler.

So, all these are contiguous therefore, it is sufficient to know the address of the starting

location, suppose this is 1000. If this is 1000 and if it be an integer and I assume that an

integer, integer takes 2 bytes say 16 bits and then this will be 1002 this will be 1004

etcetera I can compute any particular address, any particular address of this. So, if I say a

5 the address of this a 5 address of a 5 can be easily computed as the starting address

thousand whatever is a starting address plus the index is 5; that means, and the size of

integer which I know in a particular machine say 2 bytes times how much will be 106,

108. So, what will be 2 into whatever is a index minus 1; sorry a 5, a 5 will be the 6th

element right. So, 5 times whatever this is suppose this i, i times i right size of the integer

times i.

So, it will be 1000 plus 2 times 5, 1010. So, this is a 0 a 2 a 0 will be 1006, a 4 will be

1008 and a 5 will be 1010. Since it is contiguous it is sufficient for me to know the

starting address of the array, therefore, it is good enough to establish the correspondence

between the name of the array and the starting point of the array. What I mean by that is

again I draw this.

(Refer Slide Time: 16:46)

Now, I named the array differently A and suppose it has got 5 elements all right. Now A

and A 0 are treated to be synonymous. When I say a; that means, I am actually referring

to this element, this address, not this element this address. And since I know that

therefore, A i depending on the value of i, I can compute where the actual location will

be this is the fundamental concept we need to understand, all right. Therefore, we can

pass the an array to a function as ordinary arguments.

For example, is factor whether x i is a factor of x 0, suppose I want to do that. So, you

see is factor earlier I did x or y here I am writing x i, x 0. So, x i is what? Suppose x is an

integer array. So, x i is an integer x 0 is another integer. So, I can simply pass this, sin of

a particular angle. Where is that angle? In an array x an array x is there and in that the

fifth, sixth element I am taking. So, this element is coming as the parameter. So, let us

proceed a little further.

(Refer Slide Time: 18:38)

Now, that is for the individual elements x i or x 5 x 0 I am just passing an element and if

it is an integer array then an integer is being passed if it is a floating array, floating point

array then a float will be passed, but what if I want to pass the entire array to a function.

That is what I just now explained. That is an array name like A can be used as an

argument to a function because A essentially means A 0 and if I can pass A 0 the address

of A 0 is known then all the elements are known because they are contiguous.

(Refer Slide Time: 19:46)

Now, the way it is passed differs from that of the ordinary variables. Why? Here when I

have got an array and array A with A 0 when I am passing the array suppose somewhere

in my function f I am passing the array A and just to say that it is an area I just do

something like this. This is not the correct syntax, I will show you the syntax a little later.

Now, you see I write it in this way all right. Now that means, I am passing A 0, but if I

pass the value of A 0 which might be a 50 I have got no clue about the other values I am

not passing all the values. So, what do I have to pass? if I pass the address of A 0 address

of A 0. So, this is what is being passed is address of A 0 then I can get access to all these

elements A i, A 1, A 2 anything because I can compute the address very easily as I have

shown just now, all right, I can do that.

So, this is an example this is a case where we call by reference we actually will pass the

address and not the value of A 0. We are passing the address of A 0 and the address of A

0 is the same as the name A this is a very fundamental concept and let us try to

understand this. How is it passed? The array name must appear by itself. So, now, we are

talking about the some syntaxes, the array name must appear by itself as argument

without brackets or subscripts the corresponding formal argument is written in the same

manner. Let us look at an example.

(Refer Slide Time: 22:01)

Say here, I am going to pass the whole array as a parameter. So, I have declared constant

int a size 5. So, something some variable a size is assigned 5. Now, float average is a

function which will which is taking as parameter, sorry which is taking as parameter an

array B all right, just the name of the B only array name or address of B is passed. Now,

this symbol is mentioned to indicate that this is an array right. Now, let us see what is

happening int i total 0, for i equals 0 i less than a size; that means, less than 5 i plus plus

total equals total plus b i. So, what is happening? So, here is an array B, here is an array

A, a size the array size is 5 and all these elements are being added.

Now, all these elements are being added in this loop. So, B i only B 1, B 2, B 0, B 1, B 2,

B 0, B 4 they are being added to total and then I am returning what am I returning I am

returning total divided by a size now there is a new thing here also its better to look into

that. Now, the array now average will be a floating point number and B is an integer

array. So, sometimes, when i, so what has been done here is float a size when we do this

float some variable x; that means, this variable is being type casted is being made to be

represented as a float. So, if it was 5, 5 suppose then float A size. So, since is 5 float A

size will make it 5.0.

(Refer Slide Time: 24:41)

And suppose the array was 1 2 0 4 5. So, 9 to 11, 12 total was 12. So, float total will

make it 12.0. So, I am casting twelve forcing it to be represented as a float. So, then 12.0

is being divided by 5 with 5.0 and I am getting the average and that average is being

returned here. So, that is that was not our main contention here that is the purpose of this

float. But the main contention here is that I have passed this array B, but who passed it

the main function. Let us study the main function.

The main function x is an array of size A size that is 5 and x average is of some variable

and x has been assigned as 10 20 30 40 50; x average I will compute, but I am calling

this function average from here and I am passing x. What is x? x is an array and that is

appearing just as a variable here and that is being accepted as B. So, what is a

correspondence between x and B, x is somewhere suppose starting with location 5000

and there are 5 elements as I been said here 10, 20, 30, 40, 50.

(Refer Slide Time: 26:24)

Now, when this x is passed to B this function now knows that B is an array because it

had this thing and this 5000 is passed to B. So, now, B knows where is B, B is the same

array. Now, whatever change I do here, suppose in this function instead of computing the

total if I had written this function in a different way for example let us do that and

suppose I have got this function x, I have got this function x this array, sorry I am sorry x

where 10 20 30 40 50 are there and in my function change, I can also say void change int

B this and in the body of the function what I do is for please try to understand i assign 0

to this, i less than equal to A size or 5 whatever it is, i plus plus, B i plus plus say this.

What will happen?

(Refer Slide Time: 27:29)

Inside this function change I will take the first one change it to 11, this one will be 21,

this one will be 31, this only 41, this only 51 and when I return I made a change in B, but

B and x are the same because this address 5000 was passed to the function change and

this b got 5000 and so whatever change has been done here will be reflected in the main

function when I return, clear.

So, that is the importance. So, here I have called it with the actual array name here of

course, I computed a total and return some other value, but if I had just change it inside

this function I could have made it void function and the change would have been

automatically reflected in the name.

(Refer Slide Time: 29:47)

So, here you see we do not need to write the array size it works with arrays of any size.

For example, here void this etcetera where list is an array of 100 elements and average I

am calling here float average int a is an integer, and float x is map to list all right, x is an

array because here how is the correspondence done. This list, list is being mapped to this

same address is being passed and n is being passed to a how many elements are there, all

right. So, I need not specify the size because the size is already specified here. I have got

100 element array, this is my list, this is list right. So, I have got 100 element here I

know. What I have passed to x is just the address. So, whatever it is 100 or 150 that be

true for x also right. So, we do not need to write the size of the array.

(Refer Slide Time: 31:12)

Now, similarly array is used as output parameters. So, suppose I am going to do vector

sum; that means, I have got two arrays a and b. So, what I am doing here? I have got two

arrays a, an integer array another integer array b and I am adding them. So, I will add this

element say 5 with this 7 and I have got another array v sum, v sum where the sum will

be stored so this will be 12, if it was 6 and this was 5 here we will store I will add these

two and I will store 11 ok.

So, let us see how the vector sum. Now, vector sum will be void you know because it is

doing the addition and the addition is remaining in this vector sum. So, I have got let us

start with the main function x is an array. So, this is actually x a or let me say let me put

the main function first. So, it will be x in the main function and a in the this function y

slash b. I am writing slash b because these two was the same because the address is

shared all right and vector sum will be z. So, z or vector sum. So, x is 1 2 3, y is 4 5 6

and z, z has not been initialized because, so let me let me; so that you are not confused,

let me do it like this.

(Refer Slide Time: 33:28)

I have got an array that is x having values 1 2 3, another array y having values 4 5 6 and

another array, another array z which will have the final value and z all right it is 0

elements, but we do not know the value. Now, I am calling vector sum and what am I

passing x is being passed to this x goes to this. So, this is known as a for the function y

goes to this. So, this is known as b. So, x and a locations are shared z and v sum the

locations are shared, all right.

Now, I am calling vector sum. So, all these are being added in a loop 5 7 9, then I come

out I come out. Now, you see when I come out of this function these are already reflected

because it was passed by reference. Now, let us look at the print, print vector what is

happening here. Void print vector that is another function that I am calling here z 3; that

means, 3 elements will be printed from that z array z array was here which had that

elements like 5, 7 and 9.

(Refer Slide Time: 35:29)

Now, with that print vector it is just in a loop i equal to 0, i less than length. What is

length? Length is 3 and what is the array z is a. Now, this a and this a are different again,

this a and this a are different. This a, this is this a was this functions a and this a is this

function a. So, they are different. So, here they are printing 5, 7, 9. So, that is as an

output parameter.

So, you see actually whenever I am reflecting on an array I need not pass it because

essentially automatically passed right. So, that is what is very important. So, I hope you

have understood this.

(Refer Slide Time: 36:29)

The actual mechanism is when an array is passed it is the array elements are not passed,

but what is passed is an address and the argument becomes a pointer to the first element

or a pointer to the first element; that means, the address of the first element. And when an

array element is accessed inside the function the address is calculated I have already

explained the formula that is used for finding the array. So, this is known as call by

reference.

(Refer Slide Time: 37:04)

So, I think you have understood this. We will continue our discussions in the future

lectures on some other important issues.

