
Problem Solving through Programming in C
Prof. Anupam Basu

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 39
Parameter Passing in Function Revision

So, in the last lecture, we have discussed about function prototype. Before moving to

some other topic let us look at an example of function prototype and so that we can

understand it better.

(Refer Slide Time: 00:26)

Here you see here is a program were I have got a function n c r, n choose r and another

function fact. Now, the functions are actually little later here you see n choose r is like

this standard n choose r that you do. Here that is a factorial n by factorial r, so factorial n

divided by factorial r into factorial n minus r that we know from our school right. So, that

is one function that is one function.

The other function is the factorial. So, here is another function, this is one function this

another function. Now, look at the beauty of this function this function is in a simple one

return statement I have written everything. So, here you see the body of the function is

merely a computation of an expression fact 10 divided by fact r divided by n, fact n

minus r and this will be computed and that will be returned as an integer. Now, what will

be the input the input will be n and the r both of them are integers.



Another point to note here is this function itself this function itself when is running first

say I get into this function and I tried to compute the return value, first I find fact n and

from here I am calling another function that is the factorial function and the factorial

function is taking only one input one integer n and based on that it is computing the

factorial. Computing the factorial you must be remembering by now, or knowing by now,

that is I am starting with 1 and 1 times 2 times 3 etcetera I am going on doing and that is

what is being done here temp is 1 and temp is equal to temp times i, this is wrong this

should be small i, temp is temp times i, whatever the i value is, 1 times 1, 1 times 2, 1

times 3 it goes on till i reaches n and then i return temp.

So, the point to that you know, this will this thing you know. So, what is being done here

is when I am computing this function then I come to this I call this function return temp,

I return here and then I move here and again I find again I call to this fact again, this time

with the different parameter r and so again fact r is computed after this is computed

second time when I return back here. And then I again call this fact using n minus r, so

just to make the things clear. So, the first time I am calling this from here and returning

back here, second time I am calling this from here the same thing and returning back

here and third time I am calling from here and returning back here.

(Refer Slide Time: 04:29)

Now, for the third call I am, so, here is one n and that this n and here what I am passing I

am passing n minus r, I am first computing this and that is being passed here and that is



being computed. So, here you see it is an example of nested call this was called from the

main and this in turns call I mean call another function and in this way it goes on. That is

about the beauty of these two functions. But now, here is my main, main function here is

my main function. So, the compilers comes from in this way and recognises at this point

that ok, n c r is a function how does it know it looks like int. But how does it recognise

that it is a function? It recognises n c r to a function because of this parameter argument

list.

(Refer Slide Time: 05:40)

Here it is said int r there are two integers coming in as parameters next it understands

that fact is also a function. So, its expecting to encounter n c r and facts somewhere down

the line and proceeds here it takes m and n, reads m and n, then it is in a loop where it is

calling n c r. So, it is series you can understand n c r is computing some with some value

i initially 1. So, it is basically n c 1 plus n c 2 plus n c 3 plus etcetera it will go up to m

all right. So, that is what is being computed here and so from here a call is made to this.

And as we have seen earlier while this is being executed this one is calling here this is

returning back here then again this one. Now, we are making a journey in this line. So,

this one is calling this and we are returning back here as we have seen just now. Now

ultimately when this entire thing is computed then we will come to this, last bracket here

sorry I should not this bracket here; that means, it is a end of n c r. So, I had called n c r



from here. So, I will return back here and will whatever n c r value is that will be added

to sum and that will go to this sum and then will proceed in this way I hope this clear.

(Refer Slide Time: 07:42)

Now, here I have not written n c r. So, I could have I could have written this earlier in

that case this prototype would not be needed, but since I decided that I will be writing it

later. So, I decided to just introduce them as prototypes here. Now, you should be very

careful about the syntax of the, of writing the prototypes it should have the function type

just like a function name and the parameters.

Now, you will see later that it is also possible that I could have written something like int

n c r, int comma int that will also mean that this n c r takes two integers as (Refer Time:

08:45) I mean arguments, that will also that is also allowed, but it is nice to write this in

this way.



(Refer Slide Time: 09:06)

Now, next will move to a very important concept; let us quickly have a look at this the

prototype declaration and the function definitions are actually here.

(Refer Slide Time: 09:10)

Now, we are moving to a very important concept of passing the parameters, how do we

pass  the  parameters  from the  calling  function  to  the  called  function.  There  are  two

distinct  ways  in  which  it  can  be  done one  is  calling  by  value  another  is  calling  by

reference.  So, right now, let us think of calling by value all right. Now, let  us try to

understand it in a simple way.



(Refer Slide Time: 09:57)

Say, here is my main function or the calling function let me not call it main function as

we have seen they can be nested functions. So, this is the calling function. Now, inside

the calling  function I  have got  some variable  x and which may have the value says

somewhere 5 it is an integer. Now, somewhere here I am calling a function let us call a

simple function decrement or no decrement add 2 or say add 2; that means, whatever is a

value we will add 2 to that simple thing. So, here I say y is add 2 x and then semicolon

and I go on. And here is my function add 2 int a all right and add 2 is also type integer.

Now, so a we know is a local variable to the function. So, here I will take. So, what will

happen? Suppose it was 5, this will result in a will get 5 and here may be here I declare

another variable say b although it was not necessary, but I am just saying b is a plus 2

because its task is to add 2 and then I say return b. So, this b which is an integer is being

returned. So, b which will be in this case it was 5 it will be going back here. I hope this is

clear.

Now, when you know the scope of variables that b is a variable or a or b whatever the

life of those or the validity of those are restricted only during the life of this function. So,

but; however, in the case of a looking from the point of view of compiler I have got a

variable a and I have got another variable b and here I have another variable x. Now, this

variable x was having the value 5. So, here in x I had 5 by this statement, this statement

made it 5. Now, since x is 5 and this one is expecting the value a, now, this 5 will be



copied in a; what is being copied? Not x, but the value of x. So, this one will be will be

getting 5 right. So, the copy value is being copied, the value is copied in this variable 5.

Now, it takes b was something, but here. So, b becomes 5 plus 2 b becomes 7, 7 comes

out.

Now, suppose I change this program a little bit. I erase this b and make it sorry I make it

a. So, this b is no longer there this is not required all right this variable has not been

defined I say that this line is also not there, int a and I just do a plus, a assigned a plus 2.

So, now, when it was called add x then from here from here this x was copied here and a

will be incremented to 7. So, this will be incremented to 7 and obviously, this will be

return a not return b because b is not there anymore, so 7, that 7 will be returned here.

But you see if here now, 7 has been returned and 7 will be y. Now, suppose if I say I am

not following the syntax I am just saying because there is no space here printf something

x. What would be printed? For x what would be printed? 5 will be printed because x is

still 5 x has not changed. I have simply copied the value to the argument variable and

have played with that changed it whatever I wanted to do I have done.

So, take a little time to understand this. This means that the variable that I have in the

calling function the value of that will be copied to the argument of the called function.

So, there are several advantage is to this one is, so it passes the value of the argument

execution of the function does not change the actual parameter like the actual parameter

was x which was 5, it remains as 5 although the function added two to that and it came

back all changes to a parameter done inside the function are done on a copy of the actual

parameter not the original parameter. The copy is removed when the function returns to

the caller that entire variable location that was given for the variable a in our example is

returned back to the pool of memory locations. The value of the actual parameters in the

caller  is  not  affected.  Consequently  it  also  saves  us  from  some  accidental  changes

programming that can come copying due to programming errors.



(Refer Slide Time: 17:59)

On the other hand the other thing that is another type of parameter passing is known as

call by reference,  call by reference. Here we are not copying we are not copying the

variable, we are passing the address of the original argument.

(Refer Slide Time: 18:35)

So,  let  us  take the  earlier  example  again  if  I  had my main  function here  and I  had

similarly int  x and here y was add 2 x here printf  something x, and here I had that

function add two int a and here in the body I did a assign a plus 2 and return a, return a.

Now, here is a variable x and that has got an address say that address is whatever 5000.



So, now, its value here somewhere x was 5. So, its value is 5. So, here what I am in the

case of reference I am not copying the value of 5 to a instead in the parameter passing I

will write it in a different way not in this way which I will discuss later.

If I assume that this one a, a is not taking the value, but the address of the parameter,

address of the parameter. Means what? Means that this time this a here I am passing not

the value 5, but I am just simply saying that whatever data you want to work with that is

the data is in this location 5000. And it excepts that reference that the data that I am

working on my a is actually staying 5000. So, what it does? It takes the when it computes

a assigned a plus 2 this is not looking nice. So, let me write it a, a assigned a plus 2 it.

Now, knows that it is not the value a is here I have to get the value from this location. So,

it gets the value from this location,  but no other variable location has been allocated

because I know where there is only one common place, only one common place you

have done given something here and you haves told me where you have kept the data

and I am also working in that vessel itself.

So, what is happening here is this 5 will be changed to 7, here only and return I need not

return a it was just return would be sufficient. So, changes have been done here. So, in

this case when I come to this printf x what will happen what will be printed 7 will be

printed because the actual data has changed here. Let me show it you another example.

(Refer Slide Time: 23:03)



Here is my calling function and I think this vessel analogy will be fine. Now, it says that

here is the data where I have poured it only tells you where it has poured, the name of the

vessel, suppose the name of the vessel is a there are many other vessels A B C and only

this vessel name has been passed and when this one is doing something it knows the

vessel  name A.  So,  it  comes here and takes  the  data  from here does something and

returns the data from here and here this program when it is computing when it returns

and then ultimately it returns there and while it returns it takes this value this value the

change value and continues. So, in the case of calling by reference we are not copying

the value. On the other hand what would have happen in the case of call by value using

the same vessel analogy?

(Refer Slide Time: 24:15)

Say, this program was running the value was in a vessel the value was there in a vessel,

but sorry, but my function do not bother about the inter change of colours; my function

was also having its own vessel and when the function has been called the main function

calls  this a calls  or say x calls  y right, then also x copies y, copies the value of the

variable suppose that was a that is copied in the vessel that is belonging to the function it

may be b. So, this one does whatever it does here and returns this value over here. So,

this one is not disturbed whatever changes are being done are, done here.

So, that is a very fundamental  concept  in parameter  passing.  There are two types of

parameter passing one is call by value another is call by reference. Now so, here you see



execution of the function may affect the original because I am sharing the same vessel.

Now, this in C, in C we actually we are in C we actually carry out only call by value,

only call by value except for the case of arrays except for the case of arrays there is a

reason for that you will understand and for arrays we are not passing the values we are

passing by reference otherwise its always call by value.

So, let us have a look at some of the examples here, first example.

(Refer Slide Time: 27:02)

We have got the main let us see what is happening, a has been initialised to 10 and b is

not initialised, printf initially a, a. So, what will be printed? Look at this, this will print

first line initially a equals the value of a which is 10. So, here, here there is a variable a

which has got the value 10. Then b is being assigned change a what is change a change a

is a function.

So, one mistake is here I should have declared this change prototype here; however, I

should have the function prototype should have been defined earlier. Now, I come here

printf before in the; what does the function do prints before x x. So, before, so this point

before x equal to x whatever x was, it has got the copy of that x, it has got the copy of

that x. So, this it was a, a and that has been copied here for its own x, x is also 10 copied

because when it called you actually copied this. When this call was made, when this call

was made first then before that, before that it was also copied here and then only this was

done. So, it was printed then x divided by 2. So, x becomes 5 by this statement done.



So, what is being printed? After here this line is being printed here after x equals x. So,

what will be printed? I am still inside the function please remember I am still inside the

function. So, 5 will be printed and then I return return x. So, what is being returned? 5 is

being returned where it is being returned here, x has been a has been changed and that is

going to b printf a assigned. So, this printf is this printf a sorry a equals here it I am

printing a, a is a, so a is not changed. So, it is being printed as 10 and b is being printed

as 5.

So, you see a has not been changed the reflection of the change has been reflected in this

function and is being assigned to b, clear. Now, let us take another example and you will

yourself try to look at this example and a little change has been done let us all together

try to follow this example. So, a starting again a mistake is I should have declared the

function prototype here. So, those things I have not shown here so, but you should do it.

(Refer Slide Time: 30:59)

Now, let us see here. Again int x equals 10. So, x is a variable to the main function x is

having 10 printf  M here main function,  printing initially  x is 10, there is calling the

function. So, here the function is being called. And whenever this function is being called

there is a local to the function there is an argument x where this 10 is being copied.

Now, printf here, this printf in the function it prints before x was x before changing. So, x

was x. So, what will be printed? 10 will be printed. Then I change x here. So, at this

point x is becoming 5,  all  right.  Then I  am saying print after  the change this  is  this



printout after that change x is what it has been changed 5 and then I return to the main

function with the change value of x, so b gets 5. Now, I am printing in the main function

x is 10 and b is 5. So, it has been changed that is being reflected in this printf and b is

also 5 b was here, b is in the main function. So, that b has been assigned after this change

and that is also 5. Now, the distinction I think will be clear. So, so these are the two cases

that we have shown.

(Refer Slide Time: 33:38)

So, now, here let us see this is another example.

(Refer Slide Time: 33:49)



Here the slight change that has been done is that the change value I am keeping in x.

Now, this was x, and x was 10. Now, note x was 10. So, initially x is 10 fine, from this

line. Now, I have called change x, so it is coming here. But its parameter is also x, but

that really does not matter. These x from here I will create another x. This who is the

owner of this  x, the owner of this  x is  only this  function as long as this  function is

running these x has got a meaning it is existing other after that it is not there. But since I

called it the value 10 was copied in this, but you see these two are two different memory

locations. Consequently what is happening? When I print it here before x was 10. Now,

see which x is being printed? This x is being printed because this x is not known to this

function this function only knows its own x then x is changed to 5 that is also done to be

done locally here and is being said here after that the x is 5 because this x is known then

I return x. So, 5 is returned and 5 is assigned to x.

Now, whenever I have gone out of this function this x is no longer existing vanishes; that

means, the compiler returns it to the memory pool now. So, which x? Is this x? This x.

So, this value that is 5 that is being changed will come here. Now, here I am doing printf

x x; that means, both b is, so x will be printed as 5 and b equals x. So, x is also 5. Here

you see that the same value is the variable is x. So, both will be 5.

So, I hope you could understand this difference. Let us take the another example or we

will  come back to  this  in  the  next  class  and we will  start  with a  new example  and

continue  with  parameter  passing.  So,  what  we  learnt  in  today’s  lecture  is  a  very

important concept of call by value and call by reference and we could see that in C in

general call by value is adopted except for arrays and what is call by value call by value

means  the  calling  function  copies  the  value  of  the  parameter  to  the  variable

corresponding to  the  argument.  Whatever  change  is  done is  done locally  inside  that

argument and when is returned it goes back to the main function, the value goes back to

the main function. Whereas, in case of call by reference the there is only one vessel one

variable and I am not creating another variable, I am simply passing the address of that

variable to the called function and the called function changes in that particular variable

and whatever  changes  are  happening they are reflected  in  the main function,  calling

function as well.

We will continue with this.


