
Problem Solving through Programming in C
Prof. Anupam Basu

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 38
Scanf and Printf Functions; Function Prototype

In the earlier lectures, we have looked at functions and we will still be looking at

functions. We have also looked at the library functions and just to recapitulate that,

whenever we are using some library functions in our program, then we have to some

mathematical library functions, then we have to hash include math dot h. And while we

link it, we have while we compile it, we will also have to link it with the maths library

with the option minus l m as we have seen.

Now, today, since now, we have got an idea of what functions are. Let us have a relook at

our old friend’s scanf and printf, which we were using a number of times. Now, scanf

and printf are nothing but functions. These are also some library functions and those are

included whenever we use include s t d I o dot h. Now, you see scanf and printf being

functions when we enter data, let us look at this structure.

(Refer Slide Time: 01:29)

We write scanf followed by some parameters. We have also seen that, a function is a

function is nothing but, something like f; say, function name followed by some

parameters. Here, this scanf is that function name and the parameters are the control

string; that means, say for scanf you have got something like percentage d and then x

alright. So, this is the control string and these are the arguments alright. So, both of these

are arguments to the functions scanf.

So, scanf is nothing but a function. So, whenever in my program, suppose I am writing a

program and here I use scanf with some parameters. Like this, then it is nothing but a call

to a system function. A system function which actually does the task of reading the data

from the input input device.

(Refer Slide Time: 02:56)

So, a control string refers to typically the data types of the arguments. We have seen

percentage d percentage f etcetera. And the arguments are pointers to data items in

memory. These arguments in scanf are what are; the typical arguments in scanf? They are

say, whenever I use scanf, say percentage d then and a or something like that right?

Now, this and is nothing but an address of the variable a. So, in my memory, wherever

the variable a is, the variable a the compiler is allocated this memory location, for the

variable a and I am passing the address of that so; that means, it is a pointer pointing to

some address or a pointer that is pointing to this particular location in the case of scanf,

ok. So, that is why, it said the arguments these arguments arg 1 arg 2 arg n are

representing nothing but pointers to data items in the memory .

(Refer Slide Time: 04:21)

So, the example, a typical example is, say, percentage d percentage f percentage c to

which is nothing but the control string, it is designating that and a; a is a is an integer and

and a is a pointer to a. And average is a floating-point number. And and average is a

pointer to average. And type is a character type variable. And and type is, why is type a

character type variable? Because, I have put in here and c since I have put in here and c

that tells me that this type is a character type variable and and type and type is a pointer

to the variable type.

The control string consists of individual groups of characters with one-character group

for each input data item. So, this is one-character group for this a type. So, percentage we

have seen that percentage sign means, is a conversion character.

(Refer Slide Time: 05:29).

The commonly used conversion characters we have already seen some of them, these are

known to us, percentage d is for decimal or integers, percentage f for floating point

numbers, percentage c for single character, percentage s is a string. Whenever, I am

reading something variable as a string, we have discussed that in that case, we are

reading the string using percentage s and that is a string is always terminated by null

character.

Similarly, percentage x denotes that, the number that I am reading is a hexadecimal

character. Hexadecimal means decimal is with a base ten; that means, 0 to 9 are my

elements. So, all the numbers I have, I am describing using 0 to 9. That is my alphabet

set. Whereas, in the case of hexadecimal, the base is 16 and so, base being 16, I have got

0 1 2 3 4 5 6 7 8 9. These 10 numbers followed by A for 10, B for 11, C 12, D 13, E 14

and F 15.

(Refer Slide Time: 06:48)

So, up to that, 0 to 15, I can have. So, in a 16, when I work with a base 16 and that is

known as hexadecimal. Now so, so you can just establishing a similarity, analogy with

our binary numbers system that we have seen, we can have, say, a number A B.

Now, A B is a string. So, the position string position weights are, first position is 16 to

the power 0, second position is 16 to the power 1, third position is 16 to the power 2, like

that. In the case of binary, we had the first position way, it was 2 to the power 0, 2 to the

power 1, 2 to the power 2, like that right. Now and each of these positions can be filled

up in the case of binary by 0 and 1, but here, in the case of hexadecimal, it can be filled

up with any of these 0 to a 0 to F.

So, A B, when I say; that means, B is what in decimal B is 11 12. So, 12 times what is

the weight of this position 16 to the power 0 plus A is 11 sorry, sorry, sorry, sorry, I am, I

am, I am sorry. this is 10. 10 to sorry let me correct that, A is 10 and B is 11. So, it is 11

into 16 to the power 0 and 10 times 16 to the power 1. So, how much is that coming to?

160 plus 11. So, that is the number 171. Now, if I had to represent 171 in binary, I would

have required much more number of bits right.

And since it is hexadecimal, another so, here we using hexadecimal, I am being able to

do that using 2 hexadecimal bits, which we can call hex x, but, let us see A B.

(Refer Slide Time: 09:54)

A being 10 and B being 11, in binary what would that be B is 11; that means, 8 2 1, this

is 11 and 10 is 8 2 that is all. So, I would have required 4 bits for representing 171, which

I am representing using hex x alright. So, that is a hexadecimal integer. So, if I if I print

something in hex in this in this format, then it would be printed like 171 will be printed

as A B. Otherwise, it will be printed as in the binary number or in the decimal number. If

I do it with percentage d will be printed like this.

So, it was a brief introduction to hexadecimal numbers, but that you can read up

yourself. So, let us proceed.

(Refer Slide Time: 11:03)

We can also specify the maximum field width of a data item. Now, this is something I

had purposefully evaded till now, just to not to make the things complicated. I want that

you first get a custom to the normal features of c. But now, we are in a now, I think you

have you are in a position where you can write programs. Here, I am introducing the

notion of field width. A data will be printed within a width, right? So many positions will

be given to that number. data item the number indicating the field width before the

conversion character.

For example, let us make it clear. For example, percentage 3 d, percentage 5 d for A and

B; that means, A will be expected to be of sorry; A will be expected to be of 3 positions;

say, percentage it is 3 d decimal 171 whereas, B will be 5 d. So, there will be 5 positions

for this 1 2 3 4 5. So, may be 52732. Now, if I want to print 171 or read 171 using the

format 5 d, then what should I print? I should print a sorry I should provide the data for

the 5 fields. I should put it blank, blank or 0 0 then 171 assuming, it is right justify

alright.

So, this is the width. This is the width that we are talking about. We can specify how

many what is the when I am reading what is the format of the data? How many widths,

how many positions it is taking for as the data, right?

(Refer Slide Time: 13:32)

So, say for example, if I have.171 5 3 2 then 7, then, if I read it, the first data if field is

feed is this, I type to the keyboard and if it is in percentage 3 d it will be fine ok. So, I

will read that.

(Refer Slide Time: 13:56)

Again, now coming to writing now, this printf is also a system function. Just like scanf

printf is also a system function and here also, since you know already, how do you write

printf? I write printf using a control string within the double code and then followed by

this number of arguments. So, the same thing will hold here. Control string refers to the

string containing formatting information and data types of the arguments to be output .

So, now, here while printing the arg 1 arg 2, these are the representing the individual data

items. In the case of scanf, they were pointers to the data items. Here, they are individual

data items that I have told you earlier. That is why, we use ampersand a ampersand b in

the case of scanf. But in the case of printf, we just write a b, ok. Because, this a b are

directly referring to the variables the data items. The conversion characters are the same

as scanf.

(Refer Slide Time: 15:16)

So, let us look at some examples. Printf the average of a and b is avg and that avg is

percentage f, you can see that right. So, avg is a float.

Now, I could have also done this that, so, this is nothing but, there is a control string ,

here you see, I have said that 3 d 3 d 5 d. So, a will be printed. So, when do you printed a

will be printed, there is no new line here you can see.

So, a b and a times b plus 2 will be printed side by side. So, a will be printed on 3 fields

like, say 171, b b will be printed on 3 next 3 there is no space given. So, this will be b 6 3

2 and the expression. Here a times b plus 2 will have have 5 spaces 5 positions given

now; obviously, if my data for result for a was 1712, then only this much will be printed.

Then the rest will be left out, ok.

(Refer Slide Time: 17:02)

So, here you see for the percentage f.

Now, for this, I think it is not very difficult to understand. You can read them in the any

textbook. It is clearly discussed in most of the textbooks. So, I recommend you to go

through these formats and as you practice, you will keep that in mind, but just to tell you

this. So, floating point number will have 2 parts, right? One is the integer part and the

other is a decimal part. So, suppose here, when I say 7.2 f x is a floating-point number,

which is being printed in the formats 7.2 f. So, this entire width is 7 positions and the 2

positions here are kept for the decimal. So, these 2 are kept for the decimal and we

imagine, we will have a decimal point here and the rest 5 will be 5 will be for the integer

part.

For y what will happen? For y the total field is 5, out of which, so total field is 5 out of

which only 1 position is kept after the fraction. So, here, I assume the this point.

And so, there are 4 positions to represent an integer and one position to deserve represent

a fraction. So, if my result was 101.52 in this format, if I print that, then I will get 0101

or this 0 can be may not be printed.

(Refer Slide Time: 19:09)

Many more options are available. You can read from the book and we will do this later.

(Refer Slide Time: 19:13)

Now, coming to a very important concept ah, that is, function prototypes. This is possibly

new name that you are getting. What are these prototypes? Now, we are going to write

functions and those functions, one of the functions which must be there is the main

function, right? Typically, people write first the main function and then the first the

functions and then the main function, but you are free not to do that also. So, usually a

function is defined before it is called. So, typically, what we do is, when our main our

programs starts, so, we start the program starts from here, we define of we write a

function with some parameters here and the body of the function is here, then, we write,

say, main. And inside main, I call f 1 this assigned to some variable x like that. So, this is

the typically some what we do alright. After I did, this include s t d I o dot h. I started

with the function first; that is, one option now, but always, that is not done.

(Refer Slide Time: 20:58)

So, main in that case, if I define the functions first the functions, that I am going to use, I

have thought about that I have designed them. So, first I write those functions and after

that, I write the main function. In that case, the main is the last function in the program.

So, in that case, the compiler, so, I have got my program here, entire program here. And I

have defined the function f 1 here. I have defined function f 2 here. And when I write

main here and in main, I refer to f 1 f 2 whichever whenever is this required.

Now, let us look at the compiler think of yourself to be the compiler. Now, if you had

started compiling the main first and you would have come to f and f 2, then you would

wonder what is that f 1 and f 2. No variables are defined right? You would have taken

just like, if you had written x in the main, some function f 1 some function like f 1 a b

right. Then, this f 1 is not recognised; I mean you do not know about that here, but if you

write it before, the compiler will actually start looking from the beginning of the page,

beginning of the program. You will understand, a function has been defined here, I

understand that function. So, I know that and the I know what this function does it

compiles that and f 2 also. So, when it comes to in this reduction, when it comes to the

main and finds f 1 and f 2, it already knows that. So, there is no problem. So, easy for the

compiler to identify the functions, when it scans through the file this a file right, the

whole thing is a file

(Refer Slide Time: 23:22)

However, always that is not done many programmers prefer a top down approach, where

I will first define main and then I will put the functions, but then what will happen to the

compiler? The compiler if it starts with main, it is starting from the beginning and if it

encounters f 1 or f 2 in the body of the main function, then it will get confused what is it

just like, if I had got a variable x being used and it is not defined there been error

because, I do not know what this x is, what type it is right? So, I have to declare that

before there. Similarly, for functions there must be some way to tell the compiler that is

the function and for that function prototypes are used function prototypes are used.

(Refer Slide Time: 24:32)

Let us look at this needed we the function comes later. So, function prototypes let us look

at . Are usually written at the beginning of the program ahead of any other functions

including main, say for example, this is a prototype. This is a prototype, int g c d int a int

b ok. So, a and b are the parameters and g c d is a function of return type int. So, I know

just by this prototype by this, I know the basic whatever is a body whatever is a body of

g c d, I know it is interface, I know it is input output. What is it is input output? There

will be some a coming some parameter.

There are 2 parameters internally, they are named as a and b. I also know that, this is an

integer and this is also is integer and I know that it is name is g c d and I also know that,

it is output is an integer. Whatever is in between, I am not bothered about right now this

much I know. So, I will expect whenever g c d will come, I will allocate 2 integers space

for that and one return facility should be there.

Similarly, let us look at the second one div 7 int number.

(Refer Slide Time: 26:24)

So, the prototype tells that, it is a function. It is name is div 7. You can guess div 7

means, is testing the divisibility by 7 and there is one integer that is being fed and that

integers name is number and void is a type; that means, it is not returning anything. May

be, it is printing something from here, it just checks takes a number; it sees whether it is

divisible by 7 and prints it here divisible by 7, not divisible by 7, whatever you know.

How to find divisibility by 7? So, you take the number and find the mod of that with 7

and if this is equal to 0, then divisible by 7, otherwise not. So, that is in the body of the

function and here, we just do the printing. So, I am not returning anything to the calling

function. That is why, this is known as void. Void is a valid type.

(Refer Slide Time: 27:43)

Note the semicolon now here this very important. Whenever for hash include the s t d I o

dot h, I did not give a semicolon. But whenever I am declaring a function of function

prototype, I have to give a semicolon just as I had given a semicolon when I declare

something like int x semicolon.

Similarly, here, this semicolon is very important. It just like a declaration. So, the

argument names can be different, but it is I mean it is a good practice to use the same

names in the function. Now ah, so, what is being said here is that, although I am using

here, showing that A and A, but when I am actually writing the function later say, sorry.

(Refer Slide Time: 28:46)

When I am writing the function later, when I wrote later on int g c d, I can make, let us

space, sorry I can write int g c d int x comma int y that is also possible ok. Because, my

prototype just said that, 2 integer places. Now actually, I can change the name, change

the name of the place, but that is not that important. I mean that is not I mean, usually it

is better if we can keep both of them.

(Refer Slide Time: 29:33)

So, here is a function prototype example. I will continue with this in the next lecture. I

will discuss this and we will move to some other important feature of function like

parameter passing in the next lecture onwards.

