Problem Solving through Programming in C
Prof. Anupam Basu
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture — 28
Arrays (Contd.)

So, we now know that an array is identified by a name of the array. Some name like x,
num, whatever and there is an index num i or say num 4, num 5 etcetera. So, by this

index, by this index we identify which particular element of the array I am referring to.

(Refer Slide Time: 00:24)

R R R R S

Accessing Array Elements

* A particular element of the array can be accessed by specifying
two things:

— Name of the array, «— x rwm[l] ’““’““C‘i]
- Index (relative position) of the element in the array.

* In C, the index of an array starts from zero. g@j
* Example:

- An array is defined as int x[10];

— The first element of the array x can be accessed as x[0], fourth
element as x[3], tenth element as x[9], etc.

Now, in ¢ also you have said that the array starts from 0, the index of, the value of the

index starts from 0 ok.

Next. So, when we have an area defined as int x 10, the index are from 0 x, x 0 to x 9 all
right. The first element can be accessed as x 0 first element can be accessed as x 0 and

the fourth element as x 3, the tenth element as x 9.

(Refer Slide Time: 01:40)

Accessing Array Elements

* A particular element of the array can be accessed by specifying
two things:

— Name of the array.
- Index (relative position) of the element in the array.

* In C, the index of an array starts from zero. —

* Example: .8
= An array is defined as int x[10]; @] LIl Bl Ul
— The first element of the array x can be accessed as x[0], fourth
element as xl/%], tenth element as x[9], etc.

G028 ¢

I hope this is clear to you by now that this one is arrays x. So, this is x 0, this is x 1, the

fourth element will be 3 and the last element will be x 9.
So, that is how the array elements are addressed, how they are referred to by the indices.

(Refer Slide Time: 02:14)

R R RS R A T

Contd. ok %f@ﬁ

* The array index must evaluate to an integer between 0 and n-1
where n is the number of elements in thearray. ————

ax+2]=25, <
b[3*x-y] = a[10-x] + 5; a ED;j

o afy]
i l@jgﬁ;w
; b

Now, these indices must be integers. Now, the (Refer Time: 02:16) indices must be

integers that is very important. So, if [have got an array defined as int x n, where n is the

size of the array then the value of this n this index value of this index must lie between 0

to n minus 1. So, if it were twenty then the value must lie between 0 to 19 where n is the

number of elements in the array.

Now, you can see here in this example that it is not the case that always I have to put a
fixed integer as the index of course, I can write for an array, say an array is a I can
always refer to some element of the array as say a 4 for the fifth element or I can have
some other integer value x and suppose x is 2 now and if I refer I can refer to the same
thing as a x plus 2; that means, this will also evaluate to 4 and this will also point to the
fifth element of the array. Now, one thing that we have to be careful about that this value

that is computed lies between in this range between 0 to n minus 1.

So, here is another example where the array index value has been computed through an
expression 3 times X minus y is assigned. So, suppose here you can see that we are

talking of two variable, two array variables.

(Refer Slide Time: 04:25)

| B B R EC I A A B iR
Contd.
* The array index must evaluate to an integer between 0 and n-1
where n is the number of elements in the array. x:2 ¥:3
a2 =25; afd <

L btl=hlioghs
= e

i

So, let us draw a picture. A picture always clarifies the things much better. So, let us have

an array a and array b, a and b are two arrays right.

So, suppose x is 2 and y is 3 then this statement what does it do? A assigned x plus a x
plus 2, x is 2 plus 2; that means, a 4 right. So, a 4 the fifth element is being assigned the
value 25. And what is being done here? x is 2 a 10 minus x. So, that is a §8; that means,

the ninth element, let us have the fifth let me make it a little bigger suppose this is the

suppose this is the ninth element a 9, a 8 sorry a 8 this is 8. So, that was suppose 30 that
is being taken plus 5 is being added to that. So, 30 plus 5 that is 35.

Now, note this, this part is being evaluated. What is being done in evaluating this part? I
have got x to be 2. So, [am computing 10 minus x I get that to be 8; that means, I want a
particular variable which is stored in stored as a 8; that means, in the nineth location of
the array a and that is 30. I take that value 30 and add 5 to that, so I get 35. And then

what do I do? I store it in the array b and wearing in the array b.

Now, I will compute this part 3 times x, x was 2. So, 3 times 2 is 6 minus y, y was 3. So,
itwill be 3. So,inb 3,b 0,b 1, b 2, b 3; that means, again in the 4th element of this array
b 3 I will be storing the value 35. So, now, the array b will have the value 35 here. I hope
this is clear. So, you have to be very clear about the distinction between the array index

and the value of the array.

So, this 30 that I got after computing the index a 8 that was telling me where in the array
I should look at to get that value. And then that was just a value and with that value I had
another value 5 I added them together, I added them together and got the value 35. Now,
I see where I am going to store that for that again I compute the index here and I
compute the index the index must be within the range 0 to n minus 1, I compute that and
I find that the index is 3; that means, in b 3 I have to store the value and go to b 3 and

store the value. I hope this is clear right.
(Refer Slide Time: 08:14)

|
A Warning

* In C, while accessing array elements, array bounds are not

checked. e
* Example: i f‘“\j%
int marks[S{ fmm r ‘ ‘]V ‘ I_ @u‘

— The above assignment would not necessarily cause an error.

Now, in C, there is a word of caution here that in the language C the array bounds are not
checked for example, int I have got declared int marks 5; that means, I have got an array
marks whose size is 5, a dimension is 5; that means, at least I can have 5 elements in that
all right. Now, here what [am trying to do, here what I am trying to do is I am trying to
write 75 in marks 8, but there is no space for marks 8, it was 5 6 7 8 this is the place

where [am going to trying to write 75.

Now, it would be good if the compiler could give me any error that hey you had declared
it that size to be 5 and you are going beyond the border all right, you are crossing the
border. So, be careful warning syntax error or whatever syntax error and you are not
allowed to do that, but unfortunately array bounds are often not checked. So, what can
happen if you are not careful, then it will not necessarily cause an error, but will be
writing something here all right, it will be writing something at this point which might be
when I allocated the compiler allocated the memory this part was for the marks and this
part were for other variables x y p and whatever value of p was there that is overwritten
with 75. So, one must be very careful about this when writing the programs and running

it.

Suppose it is a very common thing that often you will find that there are some funny

errors occurring and the reason for that maybe you have crossed the array boundary.

(Refer Slide Time: 10:43)

L R A S T
Initialization of Arrays

* General form:
type array_namefsize] = {list of values };
* Examples:

¥ rntaaka
int marks[5] = {72, 83, 65, 80, 76} s %
G nplse] % |

* Some special cases:

wh 2228

So, it can result in unpredictable results. So, general form of initialization of arrays
whereas, the array name size with some list of values how do we. So, recall that we had
done we can do initialization slight int x equal to 25 semi code, where I declare x to be

an integer and also initialize it to a particular value.

The same thing can be done for arrays for example, I can write int marks 5 72, 83, 65, 80
16. Note that this initialization is within this two curly braces. That means, here I am
creating an array whose name is marks and the values are 72 for mark 0, 83 for marks 1,
65 for marks 2, 80 for marks 3 and 76 for marks 4, 0 1 2 3 4 5 elements. I can declare in
this way this is one form of initialization. Remember that here we are putting square

brackets for declaring the dimension, but here we are putting curly braces.
(Refer Slide Time: 12:36)

Initialization of Arrays

* General form:

type array_name(size] = {list of values };
+ Examples:

int marks[5] = {72, 83, 65, 80, 76);

char namel[d] = {&, ‘m’, ', t'}; M | L%
. 4
* Some special cases: \

— If the number of values in the list is less than the
number of elements, the remaining elements are
automatically set to zero, = —
float total[5] = {24.2, -125, 35.1); Wt JM -R§ 351\0»0 .0-0
¥ Total[0]=24.2, total[1]=-12.5, totalf2}=35.1,
total[3]=0,
total[4]=0

Similarly, this one char name 4 I have just typed in an array, so the array has got 4
elements and what is stored here A m 1 t, Amit. So, basically the name is Amit. So, that is
coming as a string of 4 characters. Although I use the word string be careful about that
because string has got a little more thing to it which I will describe later, but right now it

is an array of characters, the characters array of characters of size 4.

Now, there are some special cases the number of the, if the number of values in the list is
less than the number of elements the remaining elements are automatically set to 0 are
automatically set to 0. For example, in this case I have got a variable what is the name of

the array here the name of that is total and what type of array is it, it is an array of

floating point numbers and so there are 5 elements, 1, 2, I have got 5 spaces, 2 3 4 and 5.

There are 5 spaces yeah and I have loaded initialize it to this value.

So, here it is 24.2, the next one is minus 12.5, the next one is 35.1. The remaining
elements which are not filled up are filled up with Os automatically by the compiler if it
is less. Now, be careful that sometimes some compilers behave in a are implemented
without doing this bit and therefore, you must check whether your compiler usually the

standard compilers do that, but you should be careful about it.

(Refer Slide Time: 15:05)

J R RN N B

Contd.

- The size may be omitted. In such cases the compiler automatically
allocates enough space for all initialized elements.

int fIag[i: {1,1,1,0} Jﬂﬂim

S B2

So, total will be this as I have said here. The size may be omitted in such cases the
compiler automatically allocates enough space for the initialize variables. So, when I am
initializing it then it is possible that I can write I can leave out this size because I am
already writing it here in this form therefore, in this case what will happen flag and array
will be created just for the initialized values. So, a 4 element space will be given to you
which will be 1 1 and 0 because I have not mentioned anything here, but I must give this
symbol because just to distinguish it between int flag and int flag this because this is just

a variable integer variable this is an integer array. So, you must be careful about this too.

(Refer Slide Time: 16:24)

[R B S E-FA A RN

Contd.

- The size may be omitted. In such cases the compiler automatically
allocates enough space for all initialized elements.

int flagl] = {1, 1, 1, 0};

U H A

char namef[] = {A, ‘m’, ¥, t'};

So, similarly I could have done char name, I did not put anything here and just write A m

it.
(Refer Slide Time: 16:33)

PR eud fe 0D

Example 1: Find the minimum of a set of 10 numbers

Hinclude <stdio.h>=
main() o, S
{

int a[10],i, min; " .ZD_IM
1> printf(“Give 10 values \n"); efe} a[q]

o) | for (=0si<10; it
L j b JJD-// wanl’(u%ll“‘ L L__BQZE
min = 9999%; .

%C'UAS for (i=0; i<10; i++) e, E
{

if’ (ali] < min)
min = ali];

H
printf (“in Minimum is %d”, min);

Now, let us come to this example finding the minimum of 10 numbers. Now, we are
doing our first programming with arrays. We are doing the first programming using the

arrays.

Now, here what we are doing is first we are reading the numbers I am reading the

numbers all right. I am reading the numbers so and then I am storing them in an array.

So, let us look at this line by line. Let us look at the declarations; int a 10 what does it
mean that I have got an array of size 10 and the name of the array is a all right, there is

space for 10 elements a 0 to a 9.

Next, I have got another variable I one variable another variable mean. So, that is my
declaration part now I am printing here give 10 values. So, on the screen I will find that

give 10 values and then backslash n.

So, now the user is entering 10 values and what am I doing? I am reading those 10
values. Now, compare when you till now when we read the different integers what did
you do we wrote it like this right, scanf, percentage d meaning that is an integer
ampersand, num something like that we did to read an integer called num. Compare that
with what we have done here. Here what we have done is scanf percentage d remains the
same because whatever I am reading is nothing, but an integer and ampersand a i; that
means, this array is ith element I am reading, this means a [means I am reading the ith

element of this array a. What is the value of i? 1 is 0 initially.

So, first time whenever I am I have asked 10 values. So, i is 0, first i is pointing here. So,
11s 0. So, this; that means, this is pointing here. I read a particular value 25, I store it here
all right. Then I go in the loop what happens? i plus plus, 1 is incremented to 1; please
observe this carefully this variable is incremented to 1; that means, now the index shifts
from here to here a 1 and I read and that is less than 10 typical for loop. So, I come here
read the second value say 3. Go back increment I it becomes 2 less than 10 I come here
let this brings 2, means again this is changed to the next element all right and I read the
next value which may be 37. In that way I go on and read 10 values. Every time I am
reading one particular integer and that is being, where am I storing it that that is the
importance of this ampersand; that means, that I am reading this at the address of a 1, so

at this location.

So, this is the first part, first part of the program that has read the array. Now I want to

find out the minimum of the array. Now, let us see.

(Refer Slide Time: 21:46)

J ‘PP LIS S

Example 1: Find the minimum of a set of 10 numbers

#include <stdio.h>
main()

{
int a[10], i, min;
printf(“Give 10 values 'n”);

for (i=0; i<10; i)
2 r"’

seanf (“%od”, deali]);

min =99999; &=

for (i=0; i<10; i++)
(z =
if’ (ali] < min) j

min = ai|;

printf (“in Minimum is %d”, min);

Let me now. So, is this part clear how we read the array now? So, in this way suppose I
have read the array some array like say 5, 3, 200, 75, 1. Now, in this part of the program
I am trying to find the minimum and that is typically what we did last time, done here in
a little bit different way I am starting with a min mean which is very large. So, I am
assuming that there will be no data given at this point, at this point no data will be given

which is as large as 9 9 9 9 9, I am assuming that.

So, again in a for loop here i is starting from 0, that is i is pointing here. I am comparing
a 1; that means, a 0 a 0 we with min a 0 is less than min therefore, I can assign a 0 to min.
So, my min becomes 5. I go back to the loop i is incremented. So, i is incremented and 1
comes here; less than 10, so I come here and again compare a i. What is a i? a 1 is this
value 3, is 3 less than min yes. So, the min becomes 3. I again go back increment the

index.

So, you see in this for loop I am incrementing the index. We will see how we can write it
in different ways. Now, this is a very important exercise and you will have to program it
yourself meet with errors at several times, but then ultimately we will find it that is not
that difficult. So, 1 is now 3, I again compare 200 with min now 200 is not less than the
min. I go back to the loop I is incremented, 75 is not less than the min I come here, 1 is

less than the mean. So, this will be like this in this way it goes on.

So, here we could find two distinct applications of this for loop, one for reading the array
and storing it in a set of locations and the other one is looking through that array for
every element I am looking through this area and I am finding the minimum. Now, let us
do a little bit of exercise before we conclude this lecture today. Say I want to read an
array of integers and I want to print the array. So, what should I do? I am leaving out the
standard include stdio dot h declaration, declarations let me do; int let me call it, an array

m underscore a meaning my array and let the size be 10 all right.

(Refer Slide Time: 25:24)

i)
Tk ma[tod, 1 s D[sk}
e B %

Sl L e 5 ks
T((,JW{U,;. Mu@[])
3 frinog B Wﬁ)"/
& j; o v e [T
@: 1) i a[] 2 __LJJ

},";"ﬁi# ma[i]uz

Also 1, and then index i index need not be i, but it must be an integer variable and then I
am starting to read the array, I am trying to read the array. So, my program started here.
For reading the array, I am doing for i assign 0, i less than less than 10, i plus plus scanf
percentage d. And what am I reading? m a i. So, in a loop I will be readingm a0, ma 1,

m a 2 like that and then I want to print the array.

So, suppose I have read an array which is something like 3 2 4 5 1. Now, I want to print
the array. So, what shall I do? I will just simply again I will take one elements one by one
and will be printing them. So, I can write for i assign 0, i less than 10 i plus plus; that
means, | will be doing this. So, 1 is starting with 0 and will go up to this here I am
assuming that there are 10 elements here although I have shown only 5, then printf I can

say that, so I am printing the value of m a this percentage d. So, these things will be as it

is printed except for this is percentage d backslash n and sorry backslash n and then it is

continuing m underscore a i. Let us see what will happen and then I conclude this.

So, I have stored this now I am printing this. What will be printed? Some printing will be
something like this let me use another color for this. What will be printed is the value
first iteration. First iteration what will be printed. The value of m a; what is the value of
1? I am sorry here, there should be another one I have written wrong they are two
percentage d is, so here should be i comma this all right. So, I will repeat again. The
value of m a. Then this, then this part will come and this will correspond to the first
variable that is i. What is the value of i? Value of i is 0 is, then the second with, second
place holder that is m a Os value; that means, it is 3 backslash n. Again it will go in the
loop and what will it again print, the value of m underscore a will be printed as it is
percentage d the value of the index of m a 1 is then the value m a 1 is 2, is 2 like that it
will be printed. So, these are two fundamental operations of reading an array and printing

an array. We will continue further with the arrays.

