
Problem Solving through Programming In C
Prof. Anupam Basu

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 27
Arrays (Contd.)

So, we were looking at arrays and we have seen that all the data items constituting the

array shared the same name.

(Refer Slide Time: 00:22)

So, we can call an array to be A, an array A or a array num. If the array be A then the

elements are a 1, a 2 like that up to a n, where n is the size of the array and each

individual elements are being accessed by this indices, these are the different indices.

(Refer Slide Time: 01:11)

So, for example, here when we declare here comes a new thing. Suppose we have an

array where the size is 10, so there will be 10 elements of the array, 10 elements of the

array. Just as and just like variables array as a whole is also a variable. So, suppose I

name this array to be x these are x 1, x 2, x 3, x 4, x 5 like that up to x 10. Now, just like

we had to declare the variables like int float here, here also we need to declare the array

and the way we declare the array is shown here int x 10 what does it mean; that means, x

is an array of now I am introducing a term of dimension 10. Earlier I was talking calling

it size and here I am calling it dimension. For the time being assume that both these both

of these are the same thing, but actually there is a difference, we will explain that in the

course of discussion.

So, we declared it first of all the type of the array as I had said that an element all the

elements of an array has to be of the same type. So, either all of them will be integers or

all of them will be floats therefore, this entire array has is of a type int which says that all

the elements of this array are integers and x 10. So, let us quickly have a look at the

memory scenario. Say in the memory, this is my memory and this is the memory and in

the memory some locations are kept for the array x; that means, start from here and

maybe up to this.

(Refer Slide Time: 03:31)

Now, how much space will be given to the array must be known to the compiler because

the compiler just like the compiler allocates variables to different memory locations the

compiler will also have to allocate locations memory locations for the array elements.

Now, when I said int x 10; that means, the compiler will store space equivalent to 10

integers, 10 integers in the memory, 10 consecutive places for 10 consecutive one after

another no gap elements, 10 consecutive integer places in the memory. Therefore, how

many can you tell me, how many bytes are required for that? Integers and I have

assumed that any every integer is taking two bytes, integer is taking two bytes. If I

assume that then I will require 20 bytes here. So, there will be 20 locations each location

consisting of two bytes in this way we will go on, right.

So, you must understand when I declare this, what is the meaning of this. Dimension of

the array means that I am storing, I am reserving, I am reserving the compiler reserves

the space for 10 integers and that has to be done before the array is used, before the array

is used therefore, it must be declared before so that the compiler while it is compiling the

program can allocate enough space.

(Refer Slide Time: 06:06)

So, and now individual elements are accessed by specifying the index. So, here x, this x

is a 10 element one dimensional array linear. Now, comes a peculiar thing if you look at

this, we are saying that each of these elements are stored in these locations and which are

identifiable and accessible by the indices. Now, in C language each index, the index

value starts from 0. So, the first element although while discussing we are saying x 1 say

I was drawing an array like this where I was saying that these elements are the first

element x 1, x 2, that is true, x 3, x 4, x 5, but in C these elements are counted the

counting is started from 0, there is a reason for that which will also be evident soon.

Just remember for the time being that the first element therefore, x 1 is actually

represented in C as x then the square bracket followed by the index and the first one will

be x 0, second one will be x 1, therefore, can you tell me what will be the last element of

this array? How do I represent that? Yes, you are right x 5 will be nothing, but x 4 yeah.

Since I am starting with 0 I can go up to 4. Here in this example as you can see that I

have got 10 elements in the array therefore, I start from 0 and go up to 9 that is what is

followed in C language. There is a reason for that let me just briefly mention the reason

the reason would be this.

(Refer Slide Time: 08:54)

As I said that in the memory the array is stored in a particular region. When I declared it

as int x 10 then 20 bytes have been given to me and the array starts from this point which

has got some address maybe 1000 and this address is starting is 1002.

Now, and I know that each one is of size 2. So, when I say what is the address of x 1.

What is x 1? x 1 means here and I know the starting of this array. So, start address plus

index times number of bytes for integer will give me the actual address. So, for the first

address what will be the index x 0? So, my start address is thousand for the first one

thousand plus 0 times 2. So, that will be 1000 for x 1 1000 plus 1 times 2. So, that will be

1002, for x 5, x 5 in this way is which element; 6th element.

So, that one will be here 1 2 3 4 5 6, 1 2 3 4 5 6 this element. And what would be its

address? The address will be 1000 plus 5 times 2; that means, 1010 it starts from 1010.

So, 1002, 1004, 1006, 1008, 1010 here it will start. So, this is basically the offset. How

much I shift from the top, that is the reason the ease of computation of the address of any

of the index any index, any element with any element with a particular index can be done

using this method this formula and therefore, we start with 0 that is a specific reason for

starting with 0, all right. So, this is a 10 element one dimensional array that we have

seen. Let us move ahead.

(Refer Slide Time: 12:22)

So, like variables the arrays that are used in a program must be declared before they are

used the general syntax. Just like in integer or float we had declared them as in float

before they are used. Why do I need to declare them before they are used? Because the

compiler needs to allocate space for that otherwise the compiler does not know what type

of variable it is therefore, we also have to do the same for the array and the general

syntax will be type, array name, size. Now, again here the size I mean the dimension.

Type specifies the type of the element that will be contained in the array it can be int,

float, char or whatever.

So, I have got fields like say here I can have an array I can dictate as float the array name

can be my array and size may be 20. Now, this one specifies that this array can hold only

floating point numbers, and suppose floating point numbers are 4 bytes each then for

how much memory will be reserved for this 80 bytes will be reserved for this because 20

is a size; that means, the maximum size that the array can take. And what is my array?

Everything a just like every variable must have a name this array my this area also has

got a name called my array. And so what will be the indices? I am repeating the thing my

array is 0. So, I am writing ma for short 0 and what would be the last element here ma

for size 20, it will be 19, is it all right.

So, this is the general syntax which a must put and also there should be a semicolon at

the end, just like other declaration there is no other major difference here.

(Refer Slide Time: 15:04)

Size is an integer constant here I am calling it dimension that is it is a maximum number

of elements that can be stored inside the array. Suppose I have got so much space kept

for storing an array all right, so much space many many elements can be stored I have

reserved so much space, but in my actual working I am using only some spaces and these

are not touched that is allowed that means, but the reverse is not allowed. Unless I can, I

have got the space unless I have got space I cannot store them. So, I must reserve the

space beforehand but. So, that is why I want to I was mentioning this maximum space as

dimension and the actual number of spaces which you are using to be size of the array all

right.

(Refer Slide Time: 16:21)

The reverse is not true because suppose I have an; I have reserved. So, much space for an

array and I go I go beyond that then these marks are spaces for other variables like a b c,

their data will be destroyed by my data which I am taking as an array. Therefore, we

must restrict to this, but suppose out of this I am using only this much in my parlance I

am calling it size and this to be the dimension you can call it in this example in the slide

we are calling this to be the size of the array there is a maximum size of them. So, what

is dimension? Dimension is the maximum size that the array can be off, but in practice in

actual running it can be less than that, but not more than that.

(Refer Slide Time: 17:22)

So, I hope that part is clear to you. So, here what did I write? int marks 5 what does it

mean? It means I am storing marks and the marks are all integers right 50, 55, 60, 100 I

am storing integer marks; and how many marks can I store? 5. So, what will be the

indices? 0 marks 0 to marks 4 that is the index limit because I am starting from 0 I can

have only 5 positions. So, marks is an array containing maximum of 5 integers.

If a teacher decides that he will give fractional marks that somebody can get 62.5

somebody can get 70.2, somebody can get 59.7 then what change should we do the

change that we should do is this will be replaced with float. And if I say in my class there

can be maximum 20 students then what else should I change, I should change this and

make it 20 that is how I should declare all right.

(Refer Slide Time: 18:58)

Here are few examples int x 10; that means, x is an integer. How do we read it? x is an

integer x is an array of integers of size or dimension 10. char line 80; that means what?

that means, line is a variable array of type character. So, what will it be? There will be 80

such positions usually when we take a printout usually when we take a printout of

characters the lines were conventionally 80 characters in a line. So, there will be there

will be positions like this all through maximum 80 all right. So, the size will be 80 and

this variable is known as a line and what can it hold it can hold a characters like a, sorry

a there can be a space, space is also a character I denote space as a blank like this then

maybe x is a character, then there is a blank a blank is also varied character then c, then

d, all those things can be there.

So, it is an array of say ultimately say p is the last character something like this.

Altogether 80 spaces for character I keep in my variable line and what is the type of the

variable that type of the variable is an array, array of character all right.

(Refer Slide Time: 21:03)

Similarly, I am saying that there are 150 points, there can be 150 points and each of those

points are floating point numbers. Say name, I just stored a name, I want to store the

name of a person say name S Ravikumar is the name of a student and I want to store it in

a computer. How do I store it? I can store it in the form of an array where each of the

elements is a character first one is S then dot then r then a v i k u m a and I need one

more space r.

So, you see I needed one more space here. Why? Because I had taken I did not have

enough space here. Now, each of them is a character by the way you know that a

character is denoted like this so and so forth. Now, what this line says is that name is a

variable which has got that the capability of holding 35 such characters, it has got the

ability of storing 35 such characters at the most.

Now, how much space should we keep? How much should I keep here? If we are not

sure of the exact size of the array we can define an area of large size. Say if I think if I

have got no idea of how the what are the typical Indian names for example, or American

names for example, I can keep name 100, but is it advisable not always. When I really do

not have any idea I have got no other way, but to do it, but if I have an idea of how much

the name length can be at the most I should keep so much size because if I keep an

arbitrarily large size then what am I wasting, I am wasting my memory space because

each of these are a memory location.

Suppose beyond this never a name can extent to then I should not keep this part in the

name. But when I have got no idea of course, I have to keep a bigger large size. So, that

is the difference between the actual dimension of the array how much reserve we do and

for a S Kumar, S Ravikumar for example, my actual size is 1 2 3 4 5 6 7 8 9 10 11 all

right out of 35, 35 was the available number of spaces.

(Refer Slide Time: 24:43)

So, when we say it is int marks 50. Suppose in my class I have got say 10 students and I

am going to store the marks of only one subject in that case there is no point storing so

much space I mean it is like reserving so much space for the variable marks. If I know

since I know only 10 students are there, if I know beforehand then I can I could have

written int marks 10 or if I had known that sometimes the number of students in the class

are 10 sometimes 15, but never more than 20 then I could have kept marks 20, but I

should not keep marks 50. I hope the point is clear now.

(Refer Slide Time: 25:40)

Now, I have already described this how an array is stored in a memory. Starting from a

given memory just let us have a revision of this, starting from a given memory location

the successive array locations this is very important, the successive array elements are

allocated spaces in consecutive memory locations one after another.

So, array a will have memory locations one after another like this let now the same

computation let us do it again. Let x be the starting address of the array sorry let x be the

starting address of the area address, this is the address and k is the number of bytes

allocated power array element I had shown it for an integer now I am showing it in a

generalized form, x was the first starting location say 1000 or whatever and k is the

number of bytes allocated.

Now, then the next one will be x plus k because it started with x and needed k locations

the next one will start from x plus k, the next one will start from x plus 2 k like that the

ith element therefore, will be as we had computed earlier will be x plus i k and since we

started with 0 that will be perfectly all right. Element a i will be located some a i will be

located the address say a i here will be located starting at x plus i times k. Just a little bit

of puzzle here I have written it here. Like this a common mistake could be that I what

would have happened if I had written it like this. What is the problem of writing in this

way? the problem is; what is i k? i k is not i times k not i multiplied by k, but i k is

another variable name all right.

So, these two are not the same thing. Whenever we go for programming we should be

very careful. So, first array index is assumed to start at 0, in C we are doing that.

(Refer Slide Time: 28:24)

So, a particularly element of an array can be accessed by specifying two things. What are

the two things? Name of the array? Index, index is nothing but the relative position of the

array. We will continue with this discussion further.

