
Problem Solving Through Programming In C
Prof. Anupam Basu

Department Of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 10
Address and Content of Variables and Types

So, till now we have looked at how in C language.

(Refer Slide Time: 00:29)

We can write the identifier, this is becoming a little too thick, which identifiers are used

for used for writing the variable names and the constant name. So, for example, PI or

some variable name suggest sum all those things. Now we have seen what are the rules

that the language c imposes on writing the names of variables or constants, that is how

we can write the identifier alright.

(Refer Slide Time: 01:30)

Also we have seen that there are different data types like int with stands for integer, and

float which represents floating point numbers or real numbers, and char is used to specify

some data which is of type character. Will see some more examples of this in the course

of these lectures, now we also know that int means integer and whenever a particular

variable a is declared to be an integer, then typically it also varies from machine to

machine and compiler to compiler, 2 bits or 16 bits are located for storing one integer

alright.

Each of these boxes are that I am showing here are 8 bits wide. So, there are 2 such. So,

16 bits, for float we will have 2 more real numbers are stored using 32 bits whereas,

characters are typical is stored in 8 bits. Now this is not so sacrosanct as in some

machine which is much more powerful and much more accurate having high resolution

we can have 32 bits for storing integers 64 bits for storing floating point numbers and

characters can be a bit 16 bits.

However depending on what is the type declaration, the amount of storage the amount of

memory that is allocated to a particular variable varies ok.

(Refer Slide Time: 03:37)

We just like int float char we also have got some more like short int alright, long int or

unsigned int. These are also different data types, will come across his in the course of

this lecture. Short int means just if in an integer takes 2 bits or short int will take one bit

if a long int if a int take 16 by 16 bits; that means, 2 bytes or long int can be made to

consume 4 such bytes or 32 bits, but still that will be an integer. So, in this 4 bytes an

integer that that will be stored; that means, a integer accuracy will be much larger.

So, depending on the number of bits I allocate to a particular variable, depending on the

number of bits suppose I allocate n bits the range of values that I can represent varies for

example, if there be n bits then I can go from I can have 2 to the power n distinct values

stored for example, if there be 8 bits, then the maximum value that I can store is when all

these 8 bits are once and that is your knowledge of binary arithmetic will tell you that

this will be 2 to the power 8 right that is 256 it will be actually 255 alright. So, 255 and if

I make everything 0 if each of them are made 0 all zeros will be 0 right, I can have the

range from 0 to 255; that means, total 0 to 255; that means, I can store any of distinct 256

values 2 out of 256 values distinct values I can store any one of them. Now if this 8

would have become 16, then my maximum range would be 2 the power 16 minus one

right that is the maximum value that I can store it.

Now signed and unsigned mean sometimes in our presentation we keep one bit for the

sign part in that case of course, the range decreases, but if I go for unsigned, then we

remaining within say 16 bits to bytes.

I can have a larger representation we will go will encounter these details as and when we

need them.

(Refer Slide Time: 06:46)

Now, let us come to some examples of the data types. You can see integers 0, 25 minus

156 all these are examples of integers. Now here I am for the first time showing some

characters. Now the character values are you see the character values have got something

special say I am declaring some variable char as type char my variable, I name that my

var my var is of type character and I assign I want to assign to my var I want to assign

that my variable will hold the character a.

Now, when I am assigning a character, then I have to put a single quote around this. For

example, I had another variable int yourvar. Yourvar is another variable which is of type

int. So, if I assign into that in yourvar then I can stay to say an integer value 10, but when

I right onto a character a character constant has to be always in cap, I mean encapsulated

with into single quotes right as here.

Now, this single quote within the single quote is a character slash, what about this this is

just single quote single quote; that means, we win that there is a blank so; that means, I

am see if I say myvar is assigned this; that means, myvar will be assigned a blank

character. Now you should remember that each of these characters, that we type in have

got an ASCII value each of these characters have got an ASCII value.

(Refer Slide Time: 09:02)

What is ASCII? ASCII stands for American standard code for information interchange.

Now according to this table for every English character a b c d and capital A B C D and 1

2 two everything up to 9 or all of them have got some particular code American standard

code and that is accepted in all the computers. So, whenever I type an a, when I strike the

key on the keyboard when I strike the key a right whenever a strike a then actually when

I as I press a what goes inside the computer is an ASCII code of a alright.

Now, this ASCII code of a will be store therefore, and the code for b the quote for capital

A are all distinct. So, whenever I type in a character from the keyboard a particular

ASCII code goes in whenever I assign some value to a variable for example, as I did

right now myvar signed a this means that myvar will now, have done the ASCII code of a

alright it will have the ASCII code of a.

(Refer Slide Time: 10:32)

Now the third variety that is these three are very common float for example, 23.54 or

minus 0.00345 25.0 or I can also write it in this way. 2.5 E12 what does this mean?

This means, it is 2.5 times 10 to the power 12, what does this mean? This means 1.234

times 10 to the power minus 5, because it is E minus 5 here it is E 12 I can use capital E

or small e that really does not matter these are the examples of floating point constant ok.

(Refer Slide Time: 11:44)

So, if I have a variable like float x and I assign I can assign x to be say x is 1, y is 1, z is

another one. So, I can assign x to be 23.54 semi colon or I can assign y to be 2.5 E 12

and z to be 1.234 E minus 5 alright.

That means now z will have the value 1.234 times 10 to the power minus 5 that is how

we represent the floating point numbers given this. So, this part is clear that is how we

write the variables now and the these are the examples of data types.

(Refer Slide Time: 12:47)

Now, coming to constants the constants can give integer constants on floating point

constants just the once that we I was showing right now. But there is another type of

constant character constant so on. We have already seen example of character constants

of single character like we had say a sorry what is happening here; can have a single

character like A or say x all these within a single quote a single characters, and there is

another type of character constant which is a string.

For example I can have a string which is another type of character constant which is not

a single character, but a string of characters. For example, I want to write down my name

the name of a person. So, string type variable name to name and I can assign some value

to the string like say g o p a l alright. So, this is a number of characters taken together is

forming a string of characters, it could also be named to be x 1 2 y double quote. Now

note that in this case I am using double quote where is for single character I was using

single quote. Now these are some of the rules of defining character constants on numeric

constants in C.

(Refer Slide Time: 14:55)

Next we move to you have seen the integer constant. Now couple of things to be just

mentioned that the maximum and minimum number of values, that can be stored as an

integer constant is dependent on how many bits are allocated for the presentation. For

example, as I said that for 32 bit representation, I can have 2 to the power 32 different

combination alright. So, if you compute this you will find that on one side here is 0 when

everything.

If I take one bit to designate positive or negative, then I will be left with that 31 bits. So,

the maximum I can have on the positive side is 2 to the power of 31 minus the 1 middle

one is 0 alright and I can go up to this and on the other side I can go up to 2 to the power

minus 2 to the power 31 right. So, this is the range, there is a maximum integers and the

minimum integer that I can represent.

But; obviously, we need not be so concerned about it, because that varies with the

number of bit representation in the machine. So, for a 64 bit representation; obviously,

this size will be doubled; will be much larger I am sorry it will it will be much larger.

(Refer Slide Time: 16:32)

So, we have also seen floating point numbers just now. So, I do not need to repeat this,

and where it why are we going for this this type of why are you going for exponential

type of representation, because that enables us to represent much larger numbers and

very small numbers also using less number of bits because I can always write 0.123 into

10 to the power minus whatever.

So, here minus 12 I could have written minus 15. So, it has got 2 num 2 parts one is the

mantis apart that is this part I just put the decimal part 1 2 3 be present in binary

somewhere and on this side I put some bits for the exponents. So, it can be minus 15 plus

15. So, using less number of bits I can increase the range and can go for a much larger

range of a presentation.

(Refer Slide Time: 17:48)

This one we have already explained that single character constants, now here of course,

you can see that this operator plus also has gotten ASCII quote every character has gotten

ASCII representation whatever we have we find on the keyboard has gotten ASCII

representation. Therefore, I can also have capital z or plus as a character now here is

something that is a little new to you we have already encounter one of these as a friend

earlier, here you can see that we are using a special character like backslash.

This backslash means that whatever is following a backsplash is not the normal nature of

that for example, if I write n, it really does not mean an a character n, but backslash n has

got a different meaning alright. For example, suppose I was writing something printf say

I write you have seen that example earlier printf suppose I am just writing a b c and then

I put backslash n; that means, I am I will be painting a b c, but after that I will not print n,

but since its backslash n, its a some other information it is telling us that go to the new

line. So, immediately we go to the new line. Similarly we can see that backslash t this

one is the horizontal tab.

(Refer Slide Time: 19:37)

So, if I have backslash t my cursor will move from here to some fixed tabular distances

right.

Backslash now you know single quote or double quote; single quote if I put a charac if I

just want to print the characters single quote how do I do it? I will do it because any

character have to do it in this quote. Now if I put single quote here then it will be

confused it will take these 2 and will take a blank character in between, because a blank

character is represented as n is blank with into single quotes, but I really want that here

not blank, but I want to print the single quote.

(Refer Slide Time: 20:29)

So, in that case what should I do? For this should take the signal quote and then

backslash single quote back I mean single quote; that means, this single quote is different

from these 2 single quotes. So, these are the boundaries of the character representation

and what is the character? That is single quote similarly for double quote you can now

very easily reason that I must enclose it with in single quote, and then backslash double

quote followed by single quote .

Similarly, if I want to print backslash what should I do? Single quote then backslash; that

means, it is something different, backslash single quote similarly backslash null is

backslash 0 alright.

(Refer Slide Time: 21:38)

So, these are some special character constants that we may encounter during our

programming practice. The other new things that we have learnt is string constant; now

string constants are us are sequence of characters its a sequence of characters enclosed

within double quotes.

Just like we wrote that the characters may be the characters within the double quote may

be letters, numbers, special characters bank blank spaces like that for example, nice good

morning this is a blank here, now what will happen with this. When I put this as a string

do not think that it will be computed and printed as 9. It is just a string that will be

printed. So, if I write in this way within double quote if I write three plus six then just 3

plus 6 that string will be printed. The difference between the with character constants is

that, backslash I mean the single quote c this is a character this is a string and they are

not equivalent.

Because their representations we will see we will be internally there will be represented

in a different way this one has got an equivalent integer value that is ASCII code

whereas, this does not have an ASCII code this is something different where they will be

c and something more which will see later. So, string constants thing only thing to

remember is, string constants are a sequence of characters which can be letters numbers

expressions whatever this sort of operator special characters enclosed within double

quotes alright that is a string character .

(Refer Slide Time: 23:40)

Now, we already know what variables are. So, we do not need to repeat that.

(Refer Slide Time: 23:47)

And we have we have seen the variables.

(Refer Slide Time: 23:51)

We know that the variables are to be declared and the general syntax is a particular data

type.

Sorry is it will be a particular data type followed by variable list right. So, like examples

we have already seen, int velocity distance int a b c d, a b c d velocity distance all integer

variables temperature is a float temp is a floating point variable, flag option these are

character type of variables we have already seen them right.

(Refer Slide Time: 24:29)

Now, we come to something that we evaded till now. Pointers have got big role in C

programming, but we will just have a very simple look at the pointers. Here pointer

means basically address alright. So, you please forget about the title for the time being, a

variable is assigned a specific memory location that we know and that memory location

is assigned by the compiler. So, if we have some variable say when we find out int a b c.

(Refer Slide Time: 25:14)

Then as we have discussed earlier a b c are three memory location, which are the sign by

the compiler which of these memory locations actually have got an address right. So, the

address can be say this is 1350 is an address just like our houses have an address just like

your rooms have got some numbers, just as your drawers may have some levels. So,

similarly might be this is 1400, this is say 1450 or 1420 suppose a b c has got this 3

addresses are right.

Now, when I read when I try to read something, we know that I need to scanf. Now in

scanf what I did is percentage d and a; that means, I am trying to read the variable a, but

I did not explain to you earlier why I put this. And this and means that and you know

what is this percentage d. So, I have got some space some space to hold an integer and

that space is the in the a variable, but when the you from the keyboard type in say the

value 25.

When will that value go? The value will go to the address of the variable a, what is the

address of the variable a? 1350. So, it will go to 1350, 25 will come here similarly when

we write say scanf percentage d, percentage d comma and a and b then I am going to

read 2 values and 2 integers, and the address of the first once upon suppose type in 25

and 27. So, for the add 25 will go to the address of a that is a 1350 and 27 will go to the

address of b that is 1400.

Given this lets now read this a variable is a sign the specific memory location we know

that. For example, of variable speed is assigned memory location 1350 and assume that

the memory location contains the data value 100. So, when we use the name speed in an

expression it refers to the value 100. So, for example, when we write distance is speed

into time, then it will take this speed from this location 1350. Every variable has an

address and its contents. So, we have seen a has got an address a is a variable a has got

an address 1350.

And when I write the 25 into that 25 is a content. So, address and content we had earlier

discussed also.

(Refer Slide Time: 29:06)

But you see here integers speed I think you can read it and. So, speed is this particular

location that is in 1350 and when I right when I write speed equals speed assigned 100,

then 100 is written over here alright when I assign it. So, speed is getting the value 100

whenever, but when I say what is and speed when I am asking the question what is the

address of the variable speed, what is the address of the variable speed and the answer

would be 1350.

So, this and sorry this and operation this and operation is nothing, but asking for the

pointer to speed or the address to the variable speed. So, this should be the answer. So,

and of suppose here time is given here, if I just say and time what will that be returned

what is and time? And time will be 1351 something of this sort alright. So, that is another

thing that we needed to understand what is the purpose of this and.

(Refer Slide Time: 30:38)

So, here in C terminology speed refers to the contents of the memory location, and speed

refers to the address of the memory location corresponding to the variable speed. So, let

us come to this example printf percentage f percentage f percentage f; that means, I am

going to print three floating point numbers and what are the variables c floating point

values speed time and distance; that means, what am I going to print look here I am

going to print the contents of the memory location speed, the content of the memory

location time, the content of the memory location distance.

And when I am reading percentage f percentage f and speed and time; that means, what

that I am reading where I am reading in the address of the variable speed, I am reading in

the address of the variable time. So, this is required to be understood. So, basically when

I have say speed I once again repeat, suppose speed is 25 and I print speed; that means, I

am printing the content of this location speed, but whenever I am reading into speed

where am I reading the value? I am reading into the address of speed that is this location.

That is the main difference between these 2 alright. Let us stop here in the next lecture,

we will straight way move head to write some c expressions, because till now whatever

we have learnt are the bits and pieces the tools of c that is how the how just like in the

language how the word are written what are the some of the simple rules, but then we

will have to learn writing the real sentences in a language. So, that it we will start from

the next lecture

Thank you

