
Introduction to Internet of Things
Prof. Sudip Misra

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 23
Introduction to Arduino- II

Hi. Now, we will continue with the Introduction to Arduino Programming. This will be

the 2nd part and the continuation of the previous one.

(Refer Slide Time: 00:28)

So, we will cover the basic topics, the Operators in Arduino, Control Statements, Loops,

Arrays, Strings, The Mathematics Library, Random Number Interrupts and Example

Program which will be bit complicated than the previous one.

(Refer Slide Time: 00:44).

So, basic operators as normal C, C++ or python programming or other languages, you

have the basic equal to, plus, minus, multiplication, division module, division operators,

then comparison operators, we have equal to, not equal to, less than, greater than and all

those operators. Then, we have Boolean operators, bitwise operators and compound

operators.

(Refer Slide Time: 01:14)

Moving on to control statements, these will basically cover the various checking and

looping parts. So, a normal if else statement in Arduino, we start off with if statement.

(Refer Slide Time: 01:49)

So, if we have a condition and within this curly braces, if the statement condition is true.

If else, if another statement condition is true or else if none of the above statements are

true, then this loop will execute moving on to switch case. You have switch and choices,

you have case option 1 and statement and then, a break function after each case. So, case

option 2 is statement 2, then again a break and so on and at the end, you have a default

case. After that we again have a break function, then you have a conditional operator and

we will avoid using conditional operators such as these in Arduino. So, it is condition if

it is true, it will execute statement 1, else it will execute statement 2. These kind of

statement operators are best avoided during Arduino programming.

(Refer Slide Time: 02:35)

So, in loops you have the basic for loop, then you have the while loop you have a, do

while loop, these are pretty common examples.

(Refer Slide Time: 02:47)

.

You have a nested loop that is a loop inside another loop. You can have many nested

loops inside each other. So, you have an infinite loop. So, to run an infinite loop for

example, all you need, you develop a system in which you need to turn on and off a light

or a LED or any other device infinitely as long as the devices on your system is

checking. So, recall from the last lecture which I showed the blinking LED example.

So, you can see if you put it inside an infinite loop as long as the Arduino board is

powered, it will keep on blinking. So, your functions can be made more complicated.

Instead of LEDs, you can have motors. Instead of motors, you can have actually cameras

mounted on the motors and they keep on rotating. You can have a multitude of sensors

which are interface with the cameras and the motors. So, for example you can build the

security systems which will keep on running as long as your processor board is fine and

the power is being supplied, you can always connected to a battery supply to generate

power for it.

(Refer Slide Time: 04:08)

Then, you have arrays. Arrays are collection of elements having homogeneous data type

which are stored in adjacent memory locations. The conventional starting index is 0 in

Arduino. So, declaration of array you just start off with the data type. It maybe arrays of

integers, so int array name and the size. So, for example, int array this a variable name

array 5, it will allocate five phases for your array, then you can have an alternate

declarations.

(Refer Slide Time: 04:44)

Suppose int array and this blank bracket equal to within this curly braces, you have 0 1 2

3 4. So, these will be automatically stored in this array. Then, again you have enter a five,

you can just put in three variable, three values inside this array and the remaining will be

kept blank maybe for later use. You can fill those also. Then, you have multi-dimensional

array declarations same as previous one, you have the data type, then array name, then

the dimensionals for the first dimensional let it be n1 n2 n3. So, for example, if you want

to declare an array for an image which normally normal rgb image, so you have three

channels red, green and blue. So, each image will have 2D structures, rows and columns

and there will be a depth for each r, g and b. So, maybe for those types of data, we have

int array row column height.

(Refer Slide Time: 06:03)

So, then moving on to string, string is an array of characters with null as the termination

declaration is maybe using char char string. Here str is the array. So, abcd, so this is

stored in str char str 4 and you can individually access each ids, you can store A B C or

maybe 0. So, this using the same location if you want to individually store in different

locations. So, sorry come in the same location if you keep on storing this. The last one

will be last character stored will be updated and other will be overwritten. If you want to

store in different locations, you just change it from string it from string 0, str 1, str 2, str

3 and so on. So, you will have consecutive A B C 0 side by side these locations. Another

thing you can also, you also have a data type string. So, string str equal to ABC will give

you ABC. All together you do not have to store in individual locations. So, this is one of

the benefits of using Arduino.

(Refer Slide Time: 07:31)

So, some commonly used functions of string. So, str to upper case point to note is to

upper case T U and C are caps. So, this has to be follow strictly since this is part of the

syntax. So, it changes all the characters of string to upper case and then, you have string

str dot replace string 1 and string 2. So, string 1 if it is sub string of str, then it will be

replaced by str 2, then str dot length, it written the length of the string without

considering the null character.

(Refer Slide Time: 08:12)

Then, another commonly used library is the math library. To apply the math functions,

the math dot h header must be initially called, otherwise you will not be able to access

these functions. So, some of the common functions are cos which is in double radian and

sin tan floating absolute fabs right floating mod.

So, double value 1 and double value 2, so you have two values and f mod will give you

the modular division and the result point will be a floating point number.

(Refer Slide Time: 08:52)

Then, continuing with the math library again you have exp which signifies the

exponential function. You have log function. This will give the national logarithm of the

value. Then, you have log 10, then you have square function power function. First

argument is the base, the second argument signifies the power, then another commonly

used example is random number.

(Refer Slide Time: 09:19)

So, one of the functions of this random number is random seed. So, the syntax is random

seed S capital. You need to focus on this one because this is the inbuilt syntax for

Arduino. So, random seed int v, it reset the pseudo random number generator with seed

value v. So, the seed value is the starting point from which the random number will

initialize its function. So, you gave a starring value, from it the random number will

generate, then random maxi gives the random number within the range 0 to maxi, then

you have random mini and maxi and it gives the random number within the range mini

and max.

(Refer Slide Time: 10:24)

Then, moving on to interrupts, you have an external signal interrupts. These are basically

an external signal for which the system blocks the current running process till receiving

that signal.

So, basically you have two types of interrupts. One is hardware and another is software.

So, I will give one example. Suppose here in a loop here waiting for a checking

condition whether that checking condition holds true or not and maybe from an external

source you are getting that checking condition. For example, you have a button or a

digital switch connected to a Arduino board. So, whenever you are pressing that switch,

your system will blink an LED, otherwise it will keep the LED off. So, this may be

considered as, partially considered as an interrupt. So, this will be an external interrupt.

So, as you can see digital pin to interrupt and then, the pin number it actually changes

that digital pin to the specific interrupt number, then attach interrupt digital pin to

interrupt, then pin, then isr, then mode. So, isr is basically known as an Interrupt Service

Routine. It has to be defined explicitly. So, these are some of the more complicated

function. So, we will not focus on these interruption. Other complications we will just try

to keep it as easy as possible.

(Refer Slide Time: 12:07)

So, we will try to implement within this lecture, we will try to implement a basic

rudimentary traffic control system. So, we need Arduino board, three different LEDs,

some resisters maybe 220 ohm or 330 ohm and a few connecting jumper wires to

connect the various components on the breadboard as you can see from the previous, as

you remember from the previous example.

(Refer Slide Time: 12:31)

We connected in LED with the Arduino board. The same process has to be repeated three

times using different colored LEDs and at different pins. So, in the last example, we

connected the LED to pin 12. So, maybe in this example, we will connect to pin 2 3 and

4 side by side.

(Refer Slide Time: 13:59)

So, this is the sample sketch. So, as you can see tried to using void setup, we globally

define a few value int r equal to 2. Basically we are taking three colors r g and b, we are

not giving b. We are written y.

So, r g and y, red green and yellow, so globally we are defining r as integer equal to 2, g

equal to 3, y equal to 4 in within void setup. We initialize the serial port at 9600 broad

rate, then pin mode we write r and end output. So, as you can remember the first one was

the actual pin on the Arduino device and the second one was the mode either input or

output. So, since you are connecting LEDs will be obviously using it as output. So, r was

globally assigned as 2. So, this will be 2 and output. So, it translates to pin 2 will work as

output and then, digital write r low. So, this function will initially set the a value of pin 2

to 0. So, it will be turned up. The same process is repeated for pin 3 and pin 4 which

connected to the green and yellow LEDs.

Now, we define the function traffic. So, data type you have given as void.

(Refer Slide Time: 14:34)

So, void traffic we digit, so digital write g high that was g was defined as pin 3. So, over

here pin 3 becomes high, then serial be over the serial port, we print green LED on go.

So, since it simulates a traffic signal, you will have a go signal denoted by green, a stop

signal denoted by red and a wait signal denoted by yellow. So, green LEDs when it

switches on, it signifies go this will be printed on the serial port you can all obviously

coming this out.

Then, we induce a delay of 5 seconds using this command delay 5000. So, if you

remember from the previous example, delay takes an input in the terms of milliseconds.

One more thing this double slash, it denotes commenting the character. So, whenever

you put double slash in front of a statement, it will not execute. Your compiler will skip

the execution.

Next we go to digital write g low. So, what is physically happening is at the start of the

loop, you have the green signal is glowing and then, after 5 second delay, the green

signal is off.

(Refer Slide Time: 16:25)

Then, the yellow signal goes high. So, your print again green LED off yellow LED on.

So, the status is wait, then again a delay of 5 seconds, then followed by digital write y or

yellow as low and digital write r as high. So, your wait signal will turn off and the stop

signal will go high. Same thing is printed on the serial port, then again you have a delay

of 5 seconds, then digital write r as low. Now, you have all three LEDs turned off and

your serial print all off now within this void loop, you call this traffic function. So, this

traffic will iteratively run again and again and again till your device is powered and if

call a delay of 10000 that is 10 seconds, so your traffic signal loop will run once and then

stop for 10 seconds, then it will the whole loop will once again and it will keep on going.

(Refer Slide Time: 17:29)

So, as you can see over here in the image, the LEDs are glowing sequentially. We will

come to that on the hands on.

(Refer Slide Time: 17:39)

The various outputs are printed on the terminal. Now, if you come back to the circuit part

as you can see the code I showed you.

(Refer Slide Time: 17:59)

I have already made the code ready. I have connected the Arduino board.

(Refer Slide Time: 18:14)

So, I have three differently colored LEDs red, green and yellow. I have 330 ohm

registers, I have Arduino uno and I have a bread board. I will just connect these

sequentially green yellow red.

You must always remember this convention that the smaller pin is for ground, the longer

pin is for positive signal. So, let us check again this row is supposed to be ground. Since

the low is properly connected, green is properly connected. Now, across each LED, we

will put up a register, 330 ohm register.

First of all sense in a breadboard, these channels are fused. So, I will only need one

signal, single signal to connect to the Arduino. This was negative part will connect to

ground. Now, if you remember the green was connected to pin 3, green was assigned up

in 3 in the code. Pin 2 was assigned to red and yellow was assigned pin 4. So, now we

have our connections ready. So, three wires for r g and y and one for the ground.

(Refer Slide Time: 20:50)

Now, if you go through the code again, so you have globally declared r as pin 2 , g as pin

3 and y as pin 4. So, we have been implemented on the breadboard, then serial port

starting broad rate is 9600 pin mode, r g and y as outputs digital write, r g and y as low

that is initially at the very beginning everything will be turned off and within void traffic

you switch on each LED 1 at a time starting from green, then yellow, then red. So, this

basically what a traffic signal does is, we will compile this code.

You see the code has been compiled without any errors. I will check whether my board is

connected. Yes it. Arduino uno the port is, so the board and the ports are fine. We will

upload the code or the sketch and the uploading part is complete. So, if you focus on the

Arduino board as you can see you have a reset button. So, it has already entered into the

loop. So, we will push the reset button, so that the code execution starts from the very

beginning. You see the green LED glows on it will glow for 5 seconds followed by the

yellow one. We should again the low for 5 seconds and then, it is followed by the red one

which glows for 5 seconds. All three turn off. It will wait for 10 seconds before going

again into the loop that void traffic loop.

(Refer Slide Time: 22:44)

Now, same thing if you focus on the serial monitor, you can see green LEDs is on go

green off yellow on wait. Now, yellow off red is on stop, right. So, now everything is off.

So, it will be wait for 10 seconds.

Then, again the loop starts from the green LED. So, it is actually not required to have a

serial communication for this automatic traffic control signal, but for the sake of

debugging, I actually prefer this thing. So, you can actually when you connected your

system to PC, you can actually see which part of the loop your code or the hardware is

executing. So, it helps you in debugging your code effectively. So, this is it for now, ok.

Thank you.

