
Hardware Modeling using Verilog
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 08
Verilog Language Features (Part 3)

So, you know earlier lectures, we have seen some examples where you have tried to

illustrate some structural design constructs by using instantiation of gates. So, in the

present lecture, we shall first see what are the various types of gates that are available as

part of the Verilog language which you can directly use and instantiate in our design.

(Refer Slide Time: 00:50)

(Refer Slide Time: 00:53)

So, this is the title of our lecture and we start with our discussion on predefined logic

gates in Verilog. So, we have already seen some of these gates AND, OR, NOT, NAND,

NOR, EXOR. Verilog provides predefined logic gates as I said and we have also talked

about earlier that in Verilog will support 4 logic values step; 0, 1, undefined and high

impedance.

(Refer Slide Time: 01:34)

Now when you talk about gates for example, I use a NAND gate. So, the inputs of the

NAND gates are coming from say to other hardware blocks; let us call this t 1; let us call

this t 2. Now this t 1 and t 2; they will be belonging to this set 0, 1, X or z.

So, now when I say that this is an and gate, I also have to define; what is the behavior of

this and gate, if some arbitrary input combinations are coming on t 1 and t 2; what should

be the value of f. This actually follows from intuition; let us see; let us look at an and

gate from the definition of an and gate 0 and 0 is 0 well if 1 of the input is 0, other is 1; it

is also 0 when both the inputs are 1, then it is 1.

Now let us look at the behavior with X 1 of the input at X and the other input is 0 or 1.

So, if 1 input is X and the other is 1 for and operation you cannot say what is the output,

but if the one input is 0, then you can definitely say that the output will be 0. Similarly

for the high impedance state, some other things see if one of them is one other is the high

impedance state, then the output can be an indeterminate level, I call it X and if one is z

other is X output is also x.

So, for OR operation, it is again similar 0, 0 is 0, 0, 1 is 1, 1, 1 is 1 and for do not care if

1 of the input is 1, then the output is definitely 1, but for 0, you cannot say for this case is

again X for X or similarly 0, 0 is 0, 0, 1 is 1, 1, 1 is 0 and for other cases you really

cannot say for XOR function, if one of the input is X or z the output will be undefined.

So, for all the gates you can define the behavior in terms of the 4 valued logic 0 1 X z

like this.

(Refer Slide Time: 03:54)

Now, talking about the list of gates this is the complete list the basic gates are this and,

nand, or, nor, xor, xnor, not, there are buffers and there are some couple of more not

gates. So, I will explain this for the normal and, nand, or, nor, xor, or, xnor, the number

of inputs can be arbitrary like for example, for and I can write.

(Refer Slide Time: 04:35)

An instantiation and gate is G. So, I can write like this a, b, c, d, e, f, this will mean that

the first variable that I am using here this will be my gate output and all the remaining

variable there are 5 here this will be my inputs. So, actually I am defining a 5 input and

gate well a is the output and b, c, d, e and f are the inputs. So, this way depends on how

many variables I am using in the parameter. So, the number of inputs of the gate will be

defined accordingly, right.

So, there is a flexibility not is simple not will have a single input and a single output. So,

the input is in output is out come to buf; buf is just a buffer sometimes you need to

means isolate signals this out equal to in the logic value does not change, but the signal

values are restored, this is a buffer now there are some tri state version of buffers and not

buf if 1; let us say let us see this first buf, if one is something like this it is a buffer which

is selected by a control signal like this. So, this is c t r l this is in this is out. So, the

behavior is if your control is one then out will be equal to in if control is 0 then output

will be tri state it will be between the high impedance state right this is your buf if 1 this

gate.

Similarly, you have another gate called buf if 0; buf if 0 is similar the only difference is

that the polarity of the control is different there is a negation here. So, it is just the

reverse if control equal to 0 then out equal to in if control equal to 1 out equal to high

impedance state this is buf if 0. Similarly there are equivalent versions for not so very

similar, I am just showing the diagram and not writing expression instead of the buffer

this is be the not. So, the output will be in bar and there will be a control this is not if one

and there is another version not with the control inverse this is not if 0. So, this kind of tri

state control gates are also available if you want to use it in a design right.

(Refer Slide Time: 08:31)

When you are instantiating these kind of primary gates or primitive gates there are some

restrictions you need to remember like for example, here the outputs the first argument or

the parameter is the output the output port must always be connected to a net it cannot be

connected to a register.

So, an output signal in a module is a wire by default. So, you can directly use it if you

want now the input ports of the gate like for example, this n 1 and n 2 these can be

anything they can be connected to either nets or register type variables this I have already

said that they have a single output, but can have any number of inputs the basic gates

except not and buffer well and I have seen in the examples earlier that when you

instantiate a gate; you can specify an optional delay like suppose you specify an and you

can write and hash 5 G 1 f a b like this.

Now this delay is again only for simulation purpose for synthesis purpose this delay does

not make any sense right because it is ultimately the hardware and gate how fast or how

slow it is that will determine the delay. So, as a designer I have no idea what the delay

will be how many picoseconds or how many nanoseconds, right.

(Refer Slide Time: 09:45)

So, this optional delay this is used only for simulation and then logic synthesis tool will

ignore these delays.

(Refer Slide Time: 10:29)

So, let us take an exam which shows these delays. So, here we have a structural

representation, well note the first line for the time being, I will explain this what does

this mean this is an exclusive or function realization using nand gates; nand and nor

gates. So, using 4 gates, I can implement this exclusive here there are 3 wires t 1 t 2 and t

3. So, we have used this, this M 1 is a nand, M 2 is an and M 3 and M 4. Here we have

all specified delays as 5 as I said this will be used only for simulation purposes now the

first line time scale.

(Refer Slide Time: 11:26)

Time scale actually tells you what these numbers 5 mean you see roughly speaking the

first number here ten nanosecond this gives you the basic unit of time. So, when I write 5

it will actually mean 50 nanoseconds and 1 nanosecond will be the precision of

simulation. So, these are explained here in some detail. So, when you use the time scale

directive you can specify these 2 times now why you need this you need this for

simulation purposes that is the first thing. Now with respect to some module you may

have to specify some delay values, but some, but for some other module the deliver may

be different.

So, it is always good to have this kind of a declaration time scale declaration at the

beginning of every module. So, if the time scale values are different from one module to

the other you can have different declarations like that. So, the syntax of the time scale

command or directive is this reverse scope time scale you specify reference time units

slash time precision the reference time unit is actually used to specify the unit of

measurement of time as I had said. So, whatever here you specify 5 this 10 nanosecond

is the unit 5 in to 10, right.

And time precision the second one here in case we mentioned 1 nanosecond, it specifies

the precision with which we round off the delays during simulation; that means, how

accurate the simulation is this simulation will be accurate up to 1 nanosecond that is why

you have given a one nanosecond and for this times the valid values you can give only

110 and 100 nothing, you cannot write 2 3 5 here this values can be 1, 10 and 100 only

and this units can be of course, different.

(Refer Slide Time: 13:51)

This has I said this was the time scale we give in that example. So, when we write hash 5

it means a delay of 50 nanosecond. Now instead of nanosecond, I can use other units also

I can use s meaning second M s millisecond, then I can write u s microsecond p s

picosecond or f s femtosecond this can be specified, but again these are all for simulation

this has nothing to do with the actual delay of the circuits these are just very rough

estimates which the designer has given for the purpose of simulation.

(Refer Slide Time: 14:38)

(Refer Slide Time: 14:49)

Now, the question comes how to specify connectivity that when you are instantiating a

module within another module like what I mean is that suppose I have a module, this is

M 1 and I have another module M 2 and I am instantiating this module M 2 inside here.

So, M 2 had some input signals M 2 had some output signals. So, here also the same

input and output signals will be there. So, I will have to suitably connect this input and

output signal from the other means hardware components that are there in M 1 so that

this instantiation will work in a proper way, right.

So, there are 2 ways to specify this connectivity how these input and output lines are

connected. The first is called positional association where the parameters of the modules

that is being instantiated are listed in the same order as in the original module

description. So, in the original module description let us say we are defining a full adder.

So, if it was sum carry a, b, c, then when you are instantiating we have to specify in the

same order sum carry a, b, c.

So, we cannot change the order, but there is an alternate method called explicit

association where we can change the order we can specify the parameters in an arbitrary

order, but we shall see how I mean arbitrary order the advantage is that here the chance

of error is less because suppose, when you wrote the module for the full adder you give

the first 2 parameters sum and carry, but when you are instantiating by mistake you have

written carry and sum. So, in simulation you will see that result is not coming correctly.

So, you will have to find out where the error is there you have to debug it, but if you use

this explicit association then this kind of errors the chance of occurring will be much less

we shall see how we can use this.

(Refer Slide Time: 17:12)

So, we shall be explaining with an example first positional association. So, we take a

simple example let us say we have an example some module name is example and there

are 7 parameters A, B, C, D, E, F, Y. So, Y is the output and A, B, C, D, E, F are the

input.

Now, inside a test bench test bench is also module. So, we are instantiating this example

we are calling a DUT and these are the variable names you are giving there are total

seven parameters you are giving X 1, X 2, X 3, X 4, X 5, X 6 OUT, but we are

specifying them in the same order the first six inputs we are connecting X 1, X 2, X 3, X

4, X 5, X 6; these you are applying and the last one is the output that is out and out will

be observing how do are printing monitor right this is positional association this same

order in which we have defined the same order will be using in the instantiation, but in

the other one explicit association what you do is something like this in the original

example it was A, B, C, D, E, F. So, the output was last suppose when I instantiate; I

want output to be coming first.

So, what I have here is here with respect to this module the output first has to be

connected to out I write dot out now within bracket the variable name of the original

module description which is Y which is Y which means Y is being connecting to out

similarly I write dot X 1 within bracket a; that means, X 1 is connecting to a then X 2 is

connecting to B, you see here although we have to write more, but we can clearly see

that which variable is getting connected to which parameter of the module that you are

instantiating and this can be put in any order not necessary A, B, C, D, E, F, I can put f

first, then D, then A then C. So, the order is also not important here I can put in any order

this is one way to specify the parameters in instantiation.

(Refer Slide Time: 19:42)

Now, some of the hardware modeling issues well actually when you use the assignment

statement various kind of assignment statements we have seen we have seen the assign

statement we have seen the equal and the less than equal.

Now, depending on the type of assignment statement you are using the value that is

computed will be assigned to either a net type variable typically a wire or a reg type

variable which can be ultimately be a flip-flop or a latch a flip-flop is nothing, but an

edge triggered storage cell where data will get stored whenever a clock edge comes and

latch is level triggered whenever some enable signal is activated now a variable in

Verilog as I have said can be either net or register a net during synthesis will always map

to a wire this is a matter of fact similarly a registers which you declare in Verilog. This

will map either to a wire or to a storage cell depending on how we have written the

Verilog code. So, shall we seeing some examples later. So, we shall see this distinction

sometimes the register can be mapped to a wire sometimes it can map to a storage itself.

(Refer Slide Time: 21:09)

Let us see some examples this is a module where there are 5 ports A, B, C are the inputs

f 1 f 2 are the outputs say we see I am also declared them as wires this f 1 f 2 because

they are appearing on the left hand side of the always I am in declaring them as a reg

well here, I am not using a clock here I am writing always at the rate A or B or C what

this statement means is that you execute the always block whenever either of A or B or C

this signals are changing their state. So, whenever one or more of the signals are

changing execute the always block the meaning is this. So, here f 1 will be doing a nand

and f 2 will be doing an xor with 1 and this; now here you see the first one will be

generating a nand; next one will be generating an xor it will be like this.

(Refer Slide Time: 22:26)

First gate will be an nand where the inputs will be a and b and the output will be f 1

second one would be exclusive or gate where one of the input will be f 1 and the other

input will be C and the output will be f 2. So, this will be a combinational circuit which

will be generated and for f 1. This will also be a wire this f 1 will also be a wire there is

no need for any storage cell here. So, here although we have declared f 1 f 2 as reg both f

1 and f 2 will not require any storage cell either flip flop or latch. Let us take another

example where we have changed this little bit f 2 equal to f 1 xor f 2 and this. So, what

does this say similar declaration, but f 1 is fine for f 1 there is no problem f 1 equal to

nand of A, B.

So, let us try to just also show this; what is happening. So, we are saying A, B this is f 1,

but for the other one; I am writing f 2 equal to f 1 xor f 2. So, what does this mean what I

am saying is that there is an xor. So, one of the input is f 1 the output is f 2 and we are

saying that is output is as if the second input, right. So, you see this kind of a design is

normally not recommended what will happen here is that. So, if you do this kind of a

design for f 2 a storage cell will be generated, but for f 1 no need f 1 is a simple wire.

So, what will happen is that for f 2 here there will be a latch generated. So, the value of f

2 will be stored here and the stored value will be coming here and this latch will be

enabled whenever either A or B or C is changing, this will be how the hardware will be

implemented right this is the meaning. So, here f 2 is appearing both on the left hand side

on the right hand side that is why a storage say will be generated.

(Refer Slide Time: 25:12)

So, let us take another example this is actually the example of a latch where there are 3

ports data load and d out. So, what you are writing input data and load of the input d out

is the output and t is a temporary wire t; we are saying always whenever load our data

changes begin if load is 0 load 0 active, then data will go to t and d out will be not of t

see here the this thing, I will explain in more detail later just one first look of this; in this

if statement; there can also be a else if then else we have specified if load is 0, then do

this, but we have not mentioned what will happen if load is 1. So, the meaning is if load

is 1 the value of t should not change which means the value of t must be stored in a latch.

So, in case of this kind of incomplete if then and statement if you have that will also

generate a latch for some of the variables. This one example illustrate, we shall be

looking at some more examples later also. So, with this, we come to the end of this

lecture where we have looked at again some of the Verilog constructs and we shall be

continuing with the discussion there are a lot of other things to discuss also, we have

looked at the different ways of assigning some values to variables one is using the assign

statement another is equal to the equal to statement another is less than equal to. So, what

are the differences between these assign we have already seen, but what are the other 2.

So, we shall be seeing this in our next lectures.

Thank you.

