
Hardware Modeling using Verilog
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 07
Verilog Language Features (Part 2)

So, in the last lecture, if you recall, we were talking about some of the features of the

Verilog language in particular, we are discussing the net type variable. So, what are the

different types of net type variables; now we continue our discussion here in this lecture.

(Refer Slide Time: 00:40)

So, here we shall be first talking about the other data type that we talked about in

addition to net, the register data type. Now register data type by its very semantic, it

means that it is a variable which can hold a value like suppose I have defined a register

X, then I can write a statement like X equal to a something let X equal to A plus B.

(Refer Slide Time: 01:13)

So, I can write something; something will get assigned to X. Now this assignment will

not be done using an assign statement; not continuous assignment because I told in the

last lecture that in an assign statement the left hand side must be a net type variable it

cannot be a register type variable.

So, whenever you use a register type variable there you are actually storing a value, it is

supposed to hold the value till you are using it again. So, a register is a variable that can

hold a value and this is different from a net which is continuously driven and cannot hold

any value because if the line that is driving the net changes. The net variable immediately

changes, it cannot hold it, but I also mentioned that this does not mean that a register

variable will always map to a hardware register. This may or may not be true, there will

be some cases which we shall be illustrating with examples where you may be using a

register variable in a Verilog code, but ultimately you are circuit that we synthesized will

be a combinational circuit, right.

So, the following register data types are supported in Verilog, the most widely used is

something called REG, this is short form for register, then you have integer real and time

integer is typically used for application where you want to count something like number

of times you are looping and so on and real as the name implies this is used to store some

floating point number with fractional parts and time is a special variable which is used to

keep track of simulation time.

Now, you say let me just emphasize one thing here that we shall be talking about many

features of Verilog which are simulation only features that make sense only when you are

doing simulation, when you are carrying out synthesis, those features does not mean

anything and the synthesis tool will be simply ignoring them.

Let me take some examples, see whenever we instantiate a gate, we had seen some

examples where we had specified some delays of these gates, right, like you can use

using that hash symbol, I can right hash 5, hash 2 hash 1, but the synthesis tool will be

ignoring that those will be only for simulation purposes because in during synthesis

whenever an and gate is actually implemented. So, whatever is the actual delay of the

and gate that will be the delay, right not 1 or 2 or 3; whatever you are saying similarly

this time this time is something that relates to the time of simulation this is never used

during synthesis such variables will be ignored during synthesis.

(Refer Slide Time: 04:41)

Let us start with reg, the first thing is that in the reg data type. So, just after you declare,

but you have not initialized it to any value. So, the default value will start with undefined

or x a reg value can be assigned in several different ways, we shall be seeing that they

can be assigned in synchronism with a clock or even without a clock you can do it.

(Refer Slide Time: 05:14)

Now, there are 2 kinds of assignments, we should be learning like for example, a reg type

variable; a, you can either write an assignment like this or you can write an assignment

like this less than equal to. So, their meanings are different, we shall be explaining these

things later, but the point to notice that here A is a reg type variable. So, for these kind of

assignments the left hand side must be a reg type variable, right.

So, some of the example declarations are shown here reg x y, well if you simply specify

the name of some variable like here x and y they will be by default taken to be one bit

variables single bit variables. So, x is a 1 bit variable, y is a 1 bit variable, well you can

also define a vector, we shall be talking about vector separately again this is one example

reg within square bracket 15 colon 0 bus, this means I am declaring a variable bus where

there are 16 bits 0 is the least significant bit, 15 is the most significant bit. So, I can

define a 16 bit bus variable called bus using a statement like this. Now a reg type

variable when it is used in an arithmetic expression, it is treated as an unsigned number

without any sign and another point is that when you are actually implementing some

hardware register base design like counter shift register etcetera then you must use reg,

there is no other alternative.

(Refer Slide Time: 07:14)

So, here there is one example which uses reg, of course, here there are many constructs

which I have not discussed yet, but this example you can appreciate what it is here we

are trying to implement a counter, there are 3 ports clock reset and count clock and reset

or the input and count in the is the output as you can see count is a 32 bit vector 31 0;

that means, this is a 32 bit counter, well, ignore this reg for the time being and this is the

main body of the counter description, there is a statement called always at positive edge

of the clock. So, in English, it means this always whenever there is a positive edge of the

clock coming, you do this what you do you check, if the reset signal is one on high or not

if it is high you initialize count value 32 B 0 means it is a 32 bit number value is 0. So,

you are initializing it to 0.

If reset is one count is 0, else count equal to count plus 1; you do this every time clock

edge, positive edge is coming. Now as I said such expression with equal to. So, these are

examples where you are using that, but you can have only a reg type value in the left

hand side that is why I have to separately declare the same variable count which was in

the output also as a reg because if you do not do this your compiler will give you an error

that left hand side variable type is wrong, right. So, here the count value is increasing at

the positive edge of the clock and if reset is high the counter will be reset whenever next

clock comes, it will reset to 0.

(Refer Slide Time: 09:26)

Now, there is another way of specifying this will look at this previous one here, this

always block was executing begin end whenever the positive edge of clock was coming.

(Refer Slide Time: 09:41)

So, you think of a scenario like this. So, I have a clock, clock is coming like this, this is

one positive edge, this is another positive edge, this is another post positive edge means 0

to 1; 0 to 1 positive edge. So, this always block will get executed here, here and here, but

suppose my reset signal, I have made it high here. Let us say I have made it high here

and have kept it high for some time and they have then I made it low. So, here even

though I have made the research signal high here, but according to our previous design

the counter will be reset only here whenever the next positive edge of the clock comes.

So, counter will be reset here because the always block will be executing only when

positives coming. So, even if your reset has been activated here, it will be waiting for

some time before the counter is actually reset, but there can be application where you

may want that whenever reset is going high you reset the counter immediately, right. So,

our next design which is a slight modification of this one what we do we change this

always statement we add another clause.

What I say; we say always act positive edge of the clock or positive edge of reset. So, if

the reset signal goes from 0 to 1 that will also cause the begin end to execute and it will

see that reset has become one it will immediately reset, it to 0. So, this is an example of

asynchronous reset which means resetting is not happening in synchronism with the

clock.

(Refer Slide Time: 11:46)

So, you can have both these descriptions in Verilog as you want, next comes the integer

data type, the integer is a more general purpose type which you heard you can use it to

store any arbitrarily integer values mainly for counting some situations like loop

counting. So, reg may not be very convenient there because whenever you are counting

something the count value may sometimes become negative, but as I said in reg, a

variable declared of type reg is always considered to be an unsigned quantity it cannot

have a negative value, fine.

So, integer data type another feature is that it cannot have a size defined to it. So, the

default size is 32 bits, but the point to note is that, but if you are doing synthesis again

not for simulation if you are doing synthesis the synthesis tool will try to apply some

intelligence it will do some kind of data flow analysis and try to guess that what should

be the value of the integer should I keep whole 32 bits or less than 32 bits should also be

like you take an example. Suppose, I have declared 2 wires x and y vectors of size 16

each 0 to 15; 16 bit, 16 bits and I declare an integer of size C.

So, as I said that whenever you declare an integer you cannot specify the size then we

write sorry this not z this is C, let me correct this, this is C. So, here if I write C equal to

x plus y, this is also C yeah. So, if I write C is equal to x plus y, what will happen? Two

16 bit numbers are added. So, the synthesis tool will see that x and y are 16 bit numbers

you are adding it. So, this sum can be maximum 17 bits 16 bits plus a carry.

So, when it realizes the hardware for C it will not be implementing it as a 32 bit counter

rather, it will be using it only as a 17 bit register, 17 bit is sufficient in this particular

case, this is what I mean is that this synthesis tool will try to determine the size by

carrying out some data flow analysis wherever possible.

(Refer Slide Time: 14:32)

Talking about real data types as the name implies they are used to store floating point

numbers; numbers with fractional parts and just like in a high level language. So,

whenever you assign a real value to an integer, there is little difference normally in a

high level language like C the number is truncated and the integer part is stored, but here

it is rounded off. So, a small example, suppose I define 2 variables e and pi as real and in

the initial block which you have used seen in the test benches, this initial is normally

used in the test benches.

So, in an initial block let us say I have initialized e to 2.718 and pi 2, this is just a

notation f. So, I could have written 3.14159, but I have written 314.159 into 10 to the

power minus 2 e; minus 2 e; minus 2 means 10 to the power minus 2, right. Now

suppose I declare an integer x and somewhere again inside an initial block, I write x

equal to pi. So, pi is 3.14 say to be rounded up and only the value 3 will be assigned to X

right; this is what I mean here.

(Refer Slide Time: 16:08)

Now time is a data type which is used to keep track of simulation time. So, when

simulation is carried out well you can use that I Verilog that; I had mentioned even you

can say means you can use I Verilog or any other tool which are available to simulate a

Verilog design. So, when you do simulation there is a notion of simulation time you

specify time you specify gate delays lot of things you do. So, just a small example in the

Verilog code you can define a variable, let us say current time is a variable of type time

and this special system function dollar time is there.

So, anything starting with dollar is a system function this system function actually gives

you the current simulation time. So, in the initial block somewhere if you want to assign

the current time to this variable you can write a statement like this curr time equal to

dollar time. So, you can use the time data type in some applications where you actually

want to find out that to execute a block how much time it has taken it took. So, you can

print the time before you can print the time after and see the difference like that fine.

(Refer Slide Time: 17:43)

Now, let us come to vectors you have seen single bit variables. Now let us see how can

group such single bit variables to create something called vectors. So, nets or reg types

variables both of them they can be declared as vectors. Vectors are nothing, but multiple

bit quantities and if you do not specify this bit width then by default it is taken to be one

bit. So, some examples we have already seen vectors can be declared by specifying a

range within square bracket range one colon range 2, the convention is that the first one

range one is always the most significant bit of the number and the rightmost one range 2

is the least significant bit.

Well, I will explain what it means; let us see some examples, suppose I write simply wire

x, y, z; x, y, z are simple variables without any vector notation, these are single bit

variables. So, if I write wire 7 colon 0 sum; what does this mean? This will mean that I

have an 8 bit variable called sum this is my sum there are 8 bits.

(Refer Slide Time: 19:13)

The index is 7 is the most significant, 0 is the least significant the individual bits, I can

access by writing sum 0, sum 1 up to sum 7, this is just like an array this just like an

array of bits, similarly, another example m d r this of course, I have defined of type range

well, now the point is a range 1, range 2 can be any arbitrary values. So, it is not

necessary that range one must be greater than range 2 like in this example I have shown

reg 1 colon 10 data. So, how many numbers are there; 1 to 10, there are 10 numbers. So,

actually here also we are declaring a register of size ten, but how this is data let us see.

So, the name of the variable is data and the way we have declared the range one was one

range 2 was 10. So, the index values are defined like this 1, 2, 3, 4 up to 10. So, in this

case.

So, if you use this data in an arithmetic expression this particular bit will be treated as the

most significant bit this particular bit will be treated as the least significant bit. So, by

specifying your range one and range 2 in a suitable way, you can choose to swap LSB-

MSB like here in this case, the 7 was the MSB and 0 was the LSB, but if you write one

to 10, 1 become MSB, 10 becomes LSB. So, this convention has to be kept in mind, the

first value of the range will be the bit on the left, the second value on the range will be

the index bit index of the further on the right.

(Refer Slide Time: 21:47)

So, that will be your word. So, whenever you are using it, you should keep that in mind,

all right.

So, after you have seen this vector let us see how we can use sections of a vector in an

expression. So, what do you mean by sections of a vector suppose I have declared a

vector of size something, let us say 32. So, the example I have shown is the vector of size

32 and I want to extract 5 bits from the middle of the vector and assign it to some

variable now that can I do it? Yes, I can do it. So, I can take out any cross section of a

vector by specifying the starting and the ending index and I can assign it to some

variable I can use it in an arithmetic expression whatever I can do I want let me take an

example. So, here I am taking an example of an instruction encoding. So, the example I

have taken is a 32 bit instruction register that contains a 6 bit opcode, 3 register operands

5 bits each and an 11 bit offset.

So, what I mean is something like this suppose I have a 32 bit instruction register.

(Refer Slide Time: 23:09)

So, bit let us say from 0 to 31. So, what are the different fields? So, I have the first 6

fields or the opcode; first 6 fields means bit number 31 to bit number 26, then I have 3

register operands. So, I call them reg 1, reg 2, reg 3, these are all 5 bit fields. So, the bit

number will be 21 to 25, 16 to 20 and 11 to 15 and the last field is a field which is called

offset. Offset is an 11 bit field 0 to 10, suppose my instruction register has this format,

there are 5 fields, right. So, what I can do is something like this I can declare this register

IR 32 bit and I can declare the individual fields also opcode is a 6 bit field; reg 1, reg 2,

reg 3 are 5 bit fields, 4 to 0 offset is an 11 bit field, then I can simply write opcode equal

to IR 31 colon 26. So, you see here. So, we mentioned 31 to 26 opcode will be assigned

31 colon 26.

Similarly, reg 1 will be 25 to 21, you see reg 1 will be IR 25 to 21, reg 2 will be 20 to 16,

reg 3 15 to 11; offset 10 to 0. So, in this way, I can use this cross sections in an

assignment statement even mean I can use them in an expression like let us say, I can

write an expression like this also next I can write sum equal to let us say IR 25 to 21 plus

IR 20 to 16. So, I can write like this also. So, here what I am meaning is that 25 to 21

means this number 20 to 16 means this number; I am adding these 2 5 bit numbers and I

am storing the result in another variable sum such things I can also do, right. So, I can

take out a cross section from a given vector and I can do any kind of manipulations on it.

(Refer Slide Time: 26:00)

Now, talking about multi-dimensional arrays and memories, now we can declare multi-

dimensional arrays in Verilog of any dimension let us take 2 examples here reg 31 to 0

register bank again 15 to 0, what does this mean? First is reg 31 to 0, this is the

declaration of a register of width 32; 32 bit register. Now we are saying that I have a

register bank where there are 16 elements. So, we are actually talking about 16; 32 bit

registers, right. So, and when you access this elements will be accessing them using the 2

index values like here if I just write.

(Refer Slide Time: 27:04)

Let us say register bank if I just write 5 register bank 5, this will mean a 32 bit value, the

content of the register number 5 because here I have declared register bank as an array of

size 16; 0 to 15. So, when I say register bank 5. So, it is one of those elements and each

of this element is of type reg 31 0; that means, a 32 bit number.

But, but here for integer for example, integer is already a 32 bit by default. So, I need not

have to specify this. So, I write metric 7 0, 15 0 this is a 2 dimensional matrix with 8

rows and 16 columns, now will see later that when we use let us say memories in a

design. So, one way there are other ways also we have see. So, one way is to declare a

memory as a 2 dimensional array multi-dimensional array. So, some examples of

memory declaration is this. So, you can simply write reg some name mem bit 0 to 2, 0 4;

7, this is a 2 kilo bit memory, total number of location is 2 0 4 8 and each location

contains one bit, but if you declare it like this, similar to this register bank. So, there are

0 to 1 0 2 3; one kilo words each word is of size 16. So, you can declare a memory like

this.

(Refer Slide Time: 29:00)

So, specifying constant values you can specify constant values like this in either sized or

un-sized form, the syntax is you specify a size then a single quote followed by a base

then a number here I have shown some examples of the base I have shown as binary or

hexadecimal h 4 B 0 1 0 one means a 4 bit binary number 0 1 0 1 1; B 0 means logic 0 1

bit 12 hexadecimal means a 12 bit hexadecimal number 12 bit B 3 C.

So, this is B 3 C well out of this I can have some x also do not care also 8xf this is 8x

means all xxxx f and if I write only 25, this is a sign number and by default, it will be put

in 32 bits. So, whenever you are using integer or real numbers you typically do not use

the size specifier; they are typically expressed in un-size form, right.

(Refer Slide Time: 30:19)

Now, talking about parameters, we shall be seeing parameters again later. So, parameter

is something similar to hash define that you use in a C program, it is like a constant we

define a constant with a given name and in the program whenever we use that name we

replace that name by that constant. So, this parameter is something like that.

But when you declare parameter we do not specify the size the size automatically get

deduced by the constant values that we are defining like we have given some examples it

will be clear the first example, I am saying parameter high equal to 25 low equal to 5. So,

in the program whenever there is an HI, this HI will be replaced by 25 and whenever

there is LO, LO will be replaced by 5, similarly next example up down steady.

So, I am declaring 2 bit number 0 0 means up, 0 1 is down, 1 0 is steady. So, if we use

parameter in the program it will make your program more readable. So, instead of

writing 0 0 and 0 1; if you write up and down, it will be easier to understand, right. So,

that is the main purpose of using this kind of constructs parameter, similarly for a traffic

light controller system, let us say you can define red as a 3 bit number 1 0 0 yellow as 0

1 0 green as 0 0 1.

(Refer Slide Time: 31:57)

This some examples and just one Verilog complete module, I am showing that uses a

parameter this is an n bit counter.

So, I am declaring it as an N clear clock count clear and clock are the inputs count is the

output this is 0 to N and because I am using it on the left hand side I am also declaring it

as reg. So, this counter counts at a negative edge of the clock. So, it is reg edge. So, very

similar to the previous one; if clear count you see here; we use the other kind of

assignment less than equal to. So, the difference will explain later 0, else count equal to

count plus 1. So, here if you just change this one line in the program your module can

change from a means from a 7 bit counter to something else not 7 bit, 8 bit counter n plus

one bit 0 to n parameter n equals 7 means it is a 8 bit counter. So, if I make it 15, it will

become a 16 bit counter.

So, you change just one line that is the advantage of using parameters. So, with this we

come to the end of this lecture again we shall be looking at some more features of the

Verilog language in our next lectures.

Thank you.

