
Hardware Modeling using Verilog
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 40
Verilog Modeling of the Processor (Part 1)

In the last few lectures, if you recall we were discussing how to implement a particular

processor. Now, as an example, we took them MIPS 32 reduced instruction set computer

architecture and we looked at how we can have a pipelined implementation of a subset of

the MIPS 32 instruction set. Now, in this lecture, what we shall be looking at that

whatever we talked about with respect to pipelining of the MIPS 32, there you recall we

had identified the five stages instruction fetch, decode, execute, memory access and write

back. And we also mentioned what are the required micro operations for the different

stages. So, we shall now show how we can translate the description as we have presented

in the last lecture into verilog code directly.

(Refer Slide Time: 01:24)

So, the topic of our lecture today is verilog modeling of the processor, the first part of it.

(Refer Slide Time: 01:28)

So, when we translate the micro operations that we have discussed in the last lecture into

verilog there are a few things to remember. So, here we have identified two variables and

they are used for very specific purpose, but before that let me just tell you once more that

how instructions get executed in a pipeline.

(Refer Slide Time: 02:00)

Suppose, I have instructions i executing, so it will be going through fetch decode execute

memory axis and write back then instruction i plus 1 comes, so it will be delayed by one

cycle like this then i plus 2 comes it will be again be delayed and let say i plus 3 comes

fine. Now, let us suppose that we have a sequence of instructions that we have written

and the last instruction is a halt instruction. So, when we execute halt, the machine is

supposed to stop. Let us just assume that instruction i plus 1, let say was the halt

instruction. Let us assume, this was the halt. So, there was some instructions before it, i

minus 1, i minus 2 there are some instructions before it.

You see this halt instruction will be decoded during the ID phase. So, it is here after

instruction fetch is done we will be knowing that this is actually a halt instruction, but we

cannot stop the processor right here. Why, because the previous instruction which was

here before halt that has still not completed it was still here in the EX stage only and the

instruction before that i minus 1 that was in the MEM stage; and the one before that was

in the WB stage. So, you cannot stop the processor as soon as you detect it is halt, but

rather you wait till the right back stage is reached and only then you halt the processor.

But you remember that the halt instruction was found. So, you maintain a flip flop kind

of a thing this we referred to as halted say a single bit variable, you set this flip flop to 1,

whenever you find there is a halt instruction. So, what this will do you see just after the

halt instruction again some more instructions will automatically be entering the pipe, but

the machine is supposed to stop here, these should not be executed. So, while you

execute a instruction, you check whether this flag is set or not. So, instructions i plus 2

and i plus 3 will be finding and will be detecting that this flag is indeed set to 1. So, it

will not be doing any right like it; if it was a store instruction, it will not be writing into

memory; and if it is a register instruction, it will not be writing into register. So, writing

will be disabled if this halted state is there.

Now, similar will be the case if let us assume a scenario, there is a branch instruction, let

say branch equal to zero something. And there are some instructions after that also. Let

us assume again that this i plus 1 this was my branch instruction BEQZ. So, it is during

ID you detect that it is a branch and if you look at the micro operations you will be

identifying only at the end of EX whether the branch is actually to be taken or not

because the target address is also computed and also the condition. Let say I have

specified here R5, it is jumping to some label loop. So, it will check whether R5 is zero

or not that is also done in the EX stage. So, whatever instruction has been fetched in the

next cycle, if the branch is actually taken then this will have to be discarded right.

So, because of the same reason we maintain another flip flop this we call as taken

branch. So, it means whenever you detect in the EX stage that the branch is actually to be

taken that the condition is true you will actually have to go to loop. So, you set this

variable to 1 again. And all the following instructions which have already entered, it will

be checking this variable. If this variable is equal to 1, it will similarly not write anything

in the registers or memory. So, this is as good as saying that all the instructions which are

following the branch, they will not be executed. So, this is one change that you are

making with respect to you can see the micro operation that we have seen means earlier

during our last lecture.

(Refer Slide Time: 07:39)

So, these are the two points I now just mentioned. So, we are using two 1-bit variables

halted and taken branch. The reason I have already explained right fine.

(Refer Slide Time: 07:54)

Now, let us straight away come to the verilog code. This is the header of the description

of the pipeline, where you declare all the registers. So, you see here in this module the

inputs are only the clock nothing else, because instructions are coming from memory,

there have been loaded in memory that is all; there is no separate input that is coming to

the processor only clock one and clock two let say these are inputs. So, just like with the

last example of pipelining we discussed a few lectures back we shall be using a two

phase clock.

And stage wise we are identifying all the variables that are required there will be part of

the inter stage latch and we are using the same variable naming convention that we have

mentioned last lecture. PC - program counted will be a 32-bit register; and in addition,

for the IF ID latch, we need IR and next PC NPC. For ID EX you need IR NPC A, B and

I mm these are all 32-bit quantities. Now, in addition we also maintain some variable

called type. Well, type let me just go ahead in next slide and show you what is type.

(Refer Slide Time: 09:27)

Type is actually the type of the instruction that is encoded in three bits we are identifying

a few classes of instructions like register-register ALU we call it type 000 be type zero.

Register to memory ALU 001; load – 010; store – 011; branch - 100 and halt - 101. So,

these are the codes that you are defining and using parameters we can use this names

instead of the numbers right. So, after the instructions decoded in the ID stage you recall

during the ID stage instruction is already being fetched it is stored in IF, ID, IR the

instruction register; from there the first six bits, you recall the instruction encoding if first

six bits are the opcodes. So, the opcode will be decoded and there you can find out

whether it is an add instruction add immediate load store jump whatever.

So, depending on that you set this variable type. And as it said type is a three bit variable,

so it is a three bit register, and this type we forwarded across stages. So, there will be one

ID EX type that will be forwarded to EX MEM type, MEM WB type and so on. Because

in each stage, we will be taking some decision depending on the type of the instruction

that is why we are keeping track of this information

Then in the EX MEM stage we have registers like IR ALU out, B and a single bit

variable condition cond. This is required for jump or branch condition checking. And

MEM WB we have IR, ALU out and for load instruction load memory data LMD. Here

we declare the registers they are there are 32 registers 0 to 31 each of 32 bits. So, this is a

register bank 32 by 32. And this is how we declare the memory we are assuming there is

1024 words, each word of 32. So, the memory is 1024 by 32

Well, here in this parameter declaration, we are defining the opcodes, which we have

already discussed in an earlier lecture we had assigned some six bit opcodes to all the

instructions, and this parameter we actually summarising that. So, instead of referring the

opcodes by their bit patterns, we will be using just add, sub then add immediate and so

on because it will make our verilog code much easier to understand. We just using

parameter this example illustrates, we can make our code more readable, because you

can immediately know what that number actually stands for. So, here all these opcodes

they are assigned a mnemonic add, sub and so on. So, we have assigned opcodes to all

the instructions we are considering right.

Now, this we have already showed. These are the types and these are the two single bit

flip flops I mentioned, halted, this will be set after the halt instruction is completed in the

write backstage after the halt instruction reaches WB. And taken branch is another single

bit register which will be set. After you decide that you are taking a branch and that is

known only at the end of the EX stage as I have mentioned; only at the end of EX stage,

you will be able to set this variable, so that all the following instructions which have

entered the pipe they can check that value of the variable. And they will know that well

the branch instruction is actually been taken, so we must not make any changes

anywhere, so all rights will be disabled.

(Refer Slide Time: 13:53)

So, now let us look at the different stages of the pipeline. This is the instruction fetch

stage. Well, in instruction fetch stage, it is triggered by positive edge of clock one. Well,

we do this only if halted is not set, if a halt instruction is already set the halted flag that

means, there is no need of fetching any further instruction. So, we execute this block

only when halted this flag is equal to 0, this flip-flop.

Now, what do you check here? First in this if statement we are checking whether there is

a branch, which is being taken. How we are checking it, you see we are first checking

whether the opcode, you recall in the instruction register the opcodes were bit number 26

to 31. So, we are checking whether the opcode is equal to BEQZ. Well, in the parameter,

we have already defined a bit pattern for BQZ. So, it is B branch equal to 0 and the

condition flag equal to 1.

(Refer Slide Time: 15:08)

So, what these this condition flag will represent, this condition flag will actually

represent this condition this register A you recall the output of the first register that you

are fetching this equal to equal to 0, this is the expression you are assigning to cond,

cond is a single bit variable. So, if this is true, cond will get 1; if this is false, cond will

get 0. So, if the register value that is fetched in A is 0, then cond will be 1. So, this

condition says that if it is a branch equal to instruction and it is actually equal to 0 that

means, cond is 1. So, you have to branch or it was a branch not equal to 0 instruction and

cond was equal to 0 that means, it was the register was not equal to 0 that means, cond is

0. If either of these is true which means we have to jump.

In that case, what we do, so this instruction register we do not fetch from p c, but rather

we fetch it from the address we just calculated in EX MEM. You see for the branch

instruction as it said at the end of the EX stage the address of the branch is already

calculated and stored in EX MEM ALU out. So, you take the address from there that

memory location you load in IR. And you set the taken branch flip-flop to one these

variable to one indicating that we are actually taking the branch; and this is the address

from where you are fetching the instruction. So, now my PC or the NPC which is

pointing to the next instruction must be this plus one just the next address and else if it is

not a branch, branch is not taken then it is the normal sequence of execution you fetch

the instruction from PC, then increase PC and NPC both by 1. This is the instruction

fetch stage.

Then lets come to instruction decode. So, in the instruction decode you recall, we

basically do three things. First one we actually decode the instruction well which we are

not showing in the verilog code because there is implied in the case statements.

Secondly, we are pre-fetching to source registers and thirdly we are sign extending the

16-bit offset let us see how we are doing that.

(Refer Slide Time: 18:00)

So, here again we start by checking the halted flag. If halted is zero only then you do it;

if halted is set you skip. Well, here when you are fetching the registers, you make a

special check you recall I mentioned that R0 is a register special register, which is

assumed to always contain the value zero, nothing else can be written to R0. So, here we

are checking you see bit number is 21 to 25 in the instruction register this represents the

first register operand. Just you recall again in the instruction register, the first 6 bits is the

opcode. So, it is bit number 31 up to 26. Then you have register source 25, 21 then you

have r t, r t is 16 to 20; then you have r d, r d is 11. So, here we are accessing r s bit

number is 21 to 25.

So, we check whether this is 0 or not zero means we are trying to access r 0. So, if it is r

0; then we do not access register bank you straightaway assign zero to this A variable;

otherwise A is assign to access the register with this register number. So, whatever five

bit register number is there that is r s that will be loaded into A I D EX A.

Then you load the second operand, which is in bit number 16 to 20 same thing. If it is 0

you load the value 0 to B; otherwise, you read from the register this is your r t field load

it into B. Then the other routine things this NPC, you simply forwarded because you

need it later I f ID NPC will go to ID EX NPR IR also you forward to the next latch stage

and immediate here you are doing the extension sign extension. So, in the IR bit number

0 to 15 indicates the offset. So, this will be the last 16 bits and the highest 16 bits you

take bit number 15 replicated 16 times I said the sign bit will be replicated 16 times and

then concatenate, this will become a 32 bit quantity. So, immediate is created by sign

extension.

(Refer Slide Time: 20:59)

Then you also do another thing. You check the opcode again this is the opcode bit

number 26, 31. Depending on the opcode type, you set the value of this type. This type

you recall we have already defined three bit codes to the different types; and using

parameter instead of writing 000001, we can write it in a much more readable way like

RR ALU, RM ALU, load, store etcetera. And these are the instruction this opcodes also

have been declared using parameter. So, you understand now what is the advantage of

using parameters our code becomes much more readable. So, now you can actually see

by looking at the code that well yes we are looking at the add instruction; otherwise

seeing the opcode look at the table that well this opcode means add we have to refer

every time, but this makes your code more readable right fine.

So, if it is either add, subtract, and, or set, less than or multiply, you call it as a register-

to-register ALU type. If it is add immediate, subtract immediate, result immediate call it

as RM type. If it is load word load; store word store; branch NEQZ or branch EQZ, it is

branch. HLT is halt. And by default if it is something else by chance then also you make

it halt there is an invalid opcode case. Just one thing this ID stage is triggered by clock 2.

(Refer Slide Time: 22:42)

Then next comes the EX stage which is again triggered by clock one and the way we

started is the same we check the halted flag. So, if it is equal to zero only then we do it;

otherwise, you skip it. First we forward a few things well this EX type, whatever type

you have calculated earlier in the last stage will be forwarded to the next stage if IR is

also forwarded. And taken branch you see taken branch this variable was set in the IF

stage right if you see earlier. So, in the IF we had set this variable here. Because of this

the next instruction that we will see later that we will not be allowed to write into the WB

stage, but all instruction after that again should be allowed to continue because there will

be starting to fetch from the correct address because already program counter has been

updated.

So, now we are resetting the taken branch back to 0 here. Now, here depending on the

instruction type were carrying out the operations there is a case on type ID EX type. So,

if it is register-register ALU then again we use a case statement on the opcode this is

opcode. So, if it is add, subtract, and, or, slt, or mul, then specify what you are doing. If it

is add, ID EX A and ID EX B are added result is stored in ALU out. If it subtract

subtract, and, or; if it is set if less than you just do a comparison less than if it is true then

one will be stored in ALU out; if it is false zero will be stored in ALU out. And mul is

multiplication. And if it is an invalid opcode, then you just load this undefined xxx in

ALU out.

(Refer Slide Time: 24:50)

Next if it is registered to memory RM ALU this type then again you look at the opcode,

these are the three kinds of RM ALU instructions add immediate. Here will be adding a

with the immediate data. Subtract will be subtracting immediate data from a SLTI will be

compared in less than A and I mm, rest is same.

(Refer Slide Time: 25:17)

Then if it is load or store then you are calculating the address of the memory address of

the operand. What you do you simply add the value of A and I mm. So, this will give you

the address of the memory this is stored in ALU out. And the values of B is forwarded

because this will be requiring for store instructions later. And if it is branch then you see

this is where you take the decision branch, you calculate the target address of the branch.

How you do it the value of the program counter NPC is added to the offset I mm. So,

here you are calculating the target address if you have to take a branch and also you are

evaluating this variable cond right.

Now, you see this ALU out and cond, which you are calculating in the EX stage let us

again go back to the IF stage you are actually using them in IF stage you see you are

looking at this cond and this branch address these are being used here. So, now you can

understand from EX MEM, how they are coming they are actually getting calculated

here fine. Let us move on to the MEM stage, this is again triggered by clock two. So,

again if this halted is zero only then you execute this. So, what you do type is forwarded,

IR is also forwarded. And here again there is a case statement well let us make it uniform

here I did not put this hash to I given a delay just for notational notional purpose. Let us

use the same delay to a hash two fine.

(Refer Slide Time: 27:14)

So, if it is a register to register RR to RM, you do nothing just to forward ALU out to the

next latch. If it is load, the address of memory is already in ALU out, we have calculated

in the last type EX we access memory and store it in LMD. And store well in store you

check whether taken branch is 0 or 1; if it is 1, you do not do a write disable write; if

taken branch has been 0 only then you do the right whatever is there will be that you

store in the memory location.

(Refer Slide Time: 27:54)

And lastly in the right back or WB stage here trigger by positive edge of clock one again.

Here we check if taken branch is zero only then you do it. If taken branch is one means

someone is taking the branch you disable the writes here, you should not write into the

register, this registers, this instruction are actually dummy instruction they should be

ignored. So, what we do if it is RR ALU, you recall there the destination register is store

in bit numbers 11 to 15 in the instruction register. So, ALU out will be stored here that is

rd. If it is rn it is stored in r t bit numbers 16 to 20. And if it is load again the data is in

LMD, it will be stored in rt again 16 to 20. And if it is the halt instruction it is here in the

WB stage, you are setting this flag halted to 1, so that after you have halted you have set

the flag to 1, all further instructions will not do anything else, it will the machine will

basically stop.

So, with this we come to the end of this lecture, where basically we have translated the

micro operation that we discussed in our last lecture to verilog. Of course, we have done

a few things that are very specific to pipeline implementation like those two additional

flags we have maintained and we have check those flags at the beginning of every stage

whether that flag is active or deactive, if necessary you skip some stage. So, in the next

and final lecture, what we shall be discussing, we shall be looking at some example

programs that you want to run on this processor we have designed, and let us see how it

works, this we shall be seeing in our next lecture.

Thank you.

