
Hardware Modeling using Verilog
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 04
VLSI Design Styles (Part 1)

So, here we now take a break from Verilog and look at some of the so called VLSI

design styles. Well, when you talk about VLSI design styles, it means some of this I

already talked about in the last lectures like I talked about ASIC application, specific ICI,

talked about FPGA, there is something called semi custom and full custom designs, there

is something called gate array which falls between FPGA and ASICs.

So, will see some of the features of these design styles, the reason I would be discussing

this is that, some of you may be actually designing this kind of circuits. So, you may

want to see a correlation between the Verilog coding and the design that you will be

doing and your final target hardware. So, there are a few differences. So, unless you

understand these differences very clearly, it will be difficult for you to customize or

modify your design as you move from one design style to another. So, we start with our

discussion on VLSI design styles.

(Refer Slide Time: 01:47)

Now, VLSI design cycle, already I mentioned a little bit earlier that the VLSI design

complexity has increased immensely over the years, manual design or synthesis is simply

out of the question, now you have to use computer aided design tools which means

automation.

(Refer Slide Time: 02:20)

So, there are many reasons for doing this time to market computation cost optimization

and so on. Talking about the VLSI design cycle, here I am showing you a slightly more

detailed stepwise breakup. So, starting from the system specification; you can go to

functional design which is the register transfer level design, logic design, gates flip flops

circuit design in terms of transistors, physical design. Physical design is something

which will again look at a little more design verification, that whether our design is

correct finally, fabrication and after fabrication packaging the chip testing and debugging

these are the overall steps in the VLSI design cycle.

(Refer Slide Time: 03:06)

But talking about physical design which is somewhere here; so, after your circuit net list

is done, we go for physical design before you can actually go for fabrication, right. So,

physical design roughly says that I start with some kind of a net list typically at the gate

level or the transistor level and from the net list; I ultimately translate it in to my

manufacture hardware.

So, my manufacture hardware can be as sake, it can appreciate can anything, but this step

is like this I start with a net list at a sufficiently lower level gate level or transistor level

and I map it in to my hardware. Now in this steps of physical design, we again may have

to go through a number of intermediate steps like there are steps called partitioning, floor

planning and placement like you have to decide if it is a large design how to break it up

in to smaller partitions and on the surface of silicon where to place them how to plan my

total chip floor plan and so on, then comes a very important step of routing.

So, how to interconnect this blocks that I have already placed static timing analysis

extremely important in the modern day context. So, after I have completed placement

and routing, I need to check that whether my design is meeting my timing constraints or

not if not, I may have to go back and change these things. Signal integrity cross stock

analysis these are related to timing analysis, this are also very important and when

everything is fine, I see that everything is meeting the requirements then I complete my

physical verification process and do a step called sign off. Sign off means I am satisfied

with my physical design, now I can proceed to fabrication fine.

(Refer Slide Time: 05:22)

Now, talking of the design styles, well, I shall be looking briefly in to this 4 design styles

there is the first category of programmable devices, I will talk about field program will

get our FPGA and also simple gate array is then for standard cell design or semi custom

design and full custom design. The last 2 they fall under the category of ASICs

application specify I see fine.

(Refer Slide Time: 05:54)

Now, which design style to use; this is a matter of deciding on part of the designer, there

is a tradeoff, there is a tradeoff between hardware cost performance and the total time

required for the design. You see FPGA is easiest to design, but the circuit delay may be is

bad, but ASIC performance is very good, but hardware cost and time required will be

very high.

So, these parameters are often very conflicting. So, when you are going for a particular

kind of design we have to look in to the bigger context that exactly for whom we are

designing it, who are the potential customers and what are the main objectives that need

to be satisfied. So, in that way we can decide on the optimizing criteria in a much better

and concise way fine.

(Refer Slide Time: 07:00)

So, start with FPGA field programmable gate array.

(Refer Slide Time: 07:04)

Now, FPGA as I mentioned earlier this offers user programmability or field

programmability means we can do the programming in our lab sitting on a table, sitting

in front of table, we can do it. Now what an FPGA is really FPGA as I said just said it is

a programmable device, but inside there is an array of logic cells well array means many

thousands of logic cells, they are placed in a regular array and they are interconnected

via routing channels. Now both this logic cells and the routing channels are

programmable means their functionality can be modified.

Now, in addition to it, there are some other cells called I O cells. Now this logic cells can

be either I O cells or they can be something called lookup table blocks and this routing

channels interconnections, they are manufactured in different way; either using static

RAM or using something called anti fuse static RAM means inside, there are small

memories from outside I can store some bit pattern in this memory 0s and 1s. So, if I

store a 0 some switch will be open, if I store a one some switch will be closed. So, that

way I can the program my interconnection now anti fuse is something which is a little

different it is one time. So, by passing a high current between 2 points; so, either I can

blow out or I can connect a connection now anti fuse means normally there is no

connection.

So, if a high current is flowing then the material will be fusing it will be melting and a

connection will be established.

(Refer Slide Time: 09:17)

So, there is some FPGA manufactures which also use this kind of empty fuse technology

fine. So, means; obviously, FPGA's are very easy to use this, this chips are manufactured

by a number of vendors like Xilinx, Altera, Actel; the products vary widely in capability

they are our FPGA chips now available which are very fast very complex radiation

hardened. So, you can map very complex and large designs in to those FPGA chips as

well and development boards and cad software are available.

(Refer Slide Time: 09:55)

Now, here we have a very quick look at a particular FPGA architecture Xilinx XC4000,

you see this is a bird's eye view of the whole chip you see at the periphery there are some

small rectangles these are the so called I O blocks or I O cells.

This I O block contains some multiplexers flip flops tri state buffers; you see from some

external pins, there are signals which can be coming in or going out some of these blocks

can be input pins some of these blocks can be output pin. So, by programming these

blocks you can configure them, then you have these rectangular blocks in between these

are something called configurable logic blocks. So, again by programming this you can

make them work in various ways. So, shall we should see a little later. So, how we can

do this and in between the configurable logic blocks there is some spaces there are some

programmable interconnects are there by again programming the switches here I can

connect make connection from one block to the other as per my requirement.

So, whatever design I have, I can map them on to this fabric and I can program them in

such a way that appropriate functionality and appropriate interconnections are made.

(Refer Slide Time: 11:41)

So, that whatever circuit I want to design I want to implement that gets implement

implemented on the FPGA chip this is a basic function. So, the configurable logic block

it looks like this you see I am not going to detail, but the more interesting thing is that

there are 2 blocks here that 2 blocks here which are called look up tables. So, as you can

see there are 4 inputs and one output this look up tables can realize any 4 variable

function. So, I just explain a little later how and there is also 2 flip flops in the output.

So, by properly selecting these multiplexer there are many multiplexers you can see. So,

you can actually connect them in a variety of ways right some someway you can

program them.

(Refer Slide Time: 12:35)

So, CLB as I said, there are 2 4 input function generators here these 2, then implemented

using look up table using 16 by 1 RAM.

(Refer Slide Time: 12:55)

So, how it is done; let us try to explain, suppose I have a 16 into 1 memory RAM, there

are 16 words each containing 1 bit. So, there will be 4 address lines and then the 1 data

output or input whatever you say. So, in this memory location there will be 16 locations

you consider a 4 variable function A, B, C, D. So, any 4 variable functions, if you look at

the truth table, there will be 16 columns. Suppose I want to realize some function f of 4

variables I construct the truth table and I just fill up these memory locations by the

output column of the truth table. So, once I do this my function is ready. So, I apply a

input that corresponding location will be selected and that corresponding output will be

generated.

So, just by modifying this memory I can implement any arbitrary function of 4 variables,

this is how the programmability comes into the CLBs, right.

So, in addition to implementing 4 functions; 4 input functions, it can also be used as a

memory if you require 16 by 1 memory and also inside you have seen that there are 2

flip flops there 2 to 1 bit resistance, they can be configured as a flip flop or a latch clock

polarity you can have leading edge triggered falling edge triggered set reset all these

facilities are there look up table as I mentioned one look up table is shown here.

(Refer Slide Time: 14:45)

I am showing 1 look up table flip flop multiplexer. So, this lookup table can implement

any function of 4 variables which gives its power as I said.

(Refer Slide Time: 15:05)

So, just one small example; so, if you are given a means function we create the truth

table of the function just as I said, load the output column of the truth table in to the

SRAM. So, my function is ready. So, I apply A, B, C D to the inputm I get f as the output

of the memory.

(Refer Slide Time: 15:35)

So, any 4 variable function can be realized mapping there can be area delayed like means

I am just showing an example suppose these are some gates some gates and these are the

inputs lines are inputs this is a given net list. So, I want to map them in to those look up

tables. So, one way of mapping may be like this, this can be 1, this can be 1, this can be

y; you see if I take this part of it, this whole thing there are total 4 inputs, you see 1, 2, 3

and 4. So, overall this is a 4 input and 1 output circuit; this part similarly, this whole

thing is 1, 2, 3, 4 and 1 output.

So, any sub circuit with any number of gates with maximum up to 4 inputs and one

output can be mapped to tell LUT and here whatever remains I can map into 1 one more

LUT. So, so here there is only 2 inputs. So, there are 3 LUTs which are required, here

delays 2, this is 1 level of delay, 2 level of delay. Now you think of an alternate mapping;

let us say I take this as one, let us; I take this as 1, there is also 4 inputs; 1 output and I

take this as 1; 1, 2, 3 input and 1 output and this as 1. So, here there will be 4 LUTs,

delay will be 3 because this will be one delay this output is coming here, this will be

another delay and then this 3. So, this is a bad mapping this is a better mapping, right.

So, this LUT mapping is a big problem this a challenge.

(Refer Slide Time: 17:25)

So, the I O cells are also quite complex as you can see the I O blocks there are also

latches there. There are flip flops, these I O pads the tri state controls buffers pull ups,

there are a lot of things you can again; there is some RAM, SRAM inside by loading

them you can configure the output pins that whether it is an input pin or an output pin

whether you require tri state control and so on whether it is a stroked output you need

clock leading edge falling edge all these things you can program. So, these are extremely

flexible cells. So, by specifying a few bits you can specify exactly how these this

individual I O blocks will work.

(Refer Slide Time: 18:17)

So, and talking about the routing see this CLB is there inside which those LUTs are there

and in between, there is some space, there are some switch matrixes with some finite

number of wires that are connected and this switch matrix is also programmable like one

wire of this can be connected to a wire here say a wire here can be connected to a wire

here and the CLBs are connected to these wires.

So, by suitably, programming the switch matrix and connecting the CLBs to these; so,

we can make any kind of connection say as the output of this, CLB can be connected to

the input over this CLB. So, this is also programmable routing interconnection.

(Refer Slide Time: 19:05)

So, then FPGA you say everything is programmable the logic is programmable logic in

terms of the look up table interconnection is program means interconnection is

programmable in terms of the switch matrixes and also the I O blocks can be

programmed they are also programmable. So, when I say in that board, I have shown

earlier that I am downloading some data on the FPGA board where actually downloading

all this programming data depending on my circuit net list the synthesis software which

is there it will be generating this programming data and if I download it on my chip I will

be getting my desired functionality on that chip fine.

So, FPGA design flow if you just look at it. So, it consists of design entry to start with

you can do it in Verilog then the software that is provided by the vendor like I talked

about Xilinx, IAC or Vivado; they do placement and routing partitioning, but here it is

different here partitioning means partition in to sub circuit with maximum 4 inputs and

one output because each partition I will be mapping to one of the LUTs and this LUTs

will be placed in to one of this CLBs configurable logic blocks.

Now if you talk about the switch matrixes, you see there is a finite number of wires,

right, but if you have a very bad kind of a placement, you have placed them in such a

way that lot of wires need to be connected across a switch matrix, but may be one matrix

is allowing only 4 wires to be laid. So, you cannot complete the routing see you may

have to change the placement and again try the routing.

So, FPGA placement and routing is also a big challenge. So, if we have a good routing, if

you have a good placement, then routing will be easy if a placement is not good may be

during routing it will fail you may have to move some blocks around again try and may

ultimately will be getting out some solution. So, this placement and routing bit stream

generation is that programming.

So, whatever you want to program ultimately it is generated in the form of stream of bits

and these software, they allow you to analyze the timing behavior layout that in that

within the layout which part is heavily utilized which part is not utilized of course, you

can also do simulation and check with a function it is correct or not then finally, you can

do the download you can directly map it to the Xilinx hardware device like just talking

about that that FPGA both that I showed you earlier again.

(Refer Slide Time: 22:15)

So, here I told that there is a port here some pins through which you connect a cable to

the p c and you can download that bitmap file here to the FPGA board and this FPGA

chip will be automatically configured in that way right. So, with this way come to the

end of this lecture and the next lecture which we will look at the other design styles

namely gate array semicustom and the full custom design styles.

Thank you.

