
Hardware Modeling using Verilog
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 36
Switch Level Modeling (Part 2)

So, in this lecture we continue our discussion on switch level modelling in verilog. You

recall in our last lecture we talked about the NMOS, PMOS and the CMOS switches, we

took some examples, some simple gate implementations. And we also saw how a

bidirectional switch works, but we did not see any examples of that. So, today we shall

be starting with giving some examples of such bidirectional switches and some other

things. So, the topic of this lecture is switch level modelling the second part ok.

(Refer Slide Time: 01:03)

So, here what we try to do is we are trying to implementing a 4 by 1 multiplexer using by

directional switches, but let us look into this verilog code later.

(Refer Slide Time: 01:23)

First let us see the schematic how we are trying to design. Here we are trying to

implement a 4 line to one line multiplexer ok.

(Refer Slide Time: 01:39)

You just try to understand the functionality in a 4 to 1 multiplexer. So, you have the 4

inputs i 0 i 1 i 2 and i 3. So, we have the output let us call it out and the 2 select lines. So,

s 0 and s 1 s 0 and s 1 depending on the select line one of the inputs will be connected to

the output.

Now, here because we are using bidirectional switches, we are actually not just

implementing marks we are implementing multiplexer come de multiplexer. What is that

mean? This means suppose I have applied s 0 equal to 0 and s 1 equal to 0 both 0; that

means, i 0 is selected which means from input i 0 current will flow to out. Not only that

because the switches are bidirectional from the output node, current will also flow into i

0.

Similarly, if I apply some other control signal this current will get diverted to that

particular input and this will be bidirectional current can flow in any direction right. So,

although I have called it a multiplexer it is actually a multiplexer cum demultiplexer.

Multiplex means many to one de multiplex means one to many both ways ok.

Now, let us see how it works. Here we have used a combination of tran if 0 and tran is 1

switches. Now you recall what a tran if 0 switches. A tran if 0 switch means if the control

signal is 0 if 0 then it will be conducting. And a tran is 1 switch means if the control

signal is one then it will be conducting ok.

Now, let us see. The 4 inputs are i 0 i 1 i 2 and i 3 and this is the out. Now when I have to

select i 0 you see this s 0 I have connected to all the switches in the first level. And s 1 I

have connected to all the switches in the second level. So, if I want to select i 0. So, s 0 s

1 will be both 0 and 0. You see the first row of the structure. I have connected to tran if 0

switches if s 0 is 0 this will be on if s 1 is 0 this will be on. So, when both s 0 s 1 are 0

this path will be on and i 0 and out will be connected.

Now, suppose s 1 is 0 and s 0 is 1 then i 1 should be selected. That is why we have use a

tran is 1 switch here. If s 0 is one and s 1 is 0 then this path will be selected. Similarly if s

1 is 1 and s 0 is 0 then i 2 is selected. And if both of them are 1 then the last one is

selected.

So, depending on the value of s 0 and s 1, exactly one of the row is selected and that

input is getting connected to the output right. Now this has been coded directly in verilog

here. You see there are 8 tran switches, 4 and 4 8. This is a multiplexer out s 0 s 1 are the

select lines and i 0 i 1 i 2 i 3 are the inputs.

So, the intermediate line these one t 0 t 1 t 2 t 3 they are declared as wires. So, we have

just simply coded you see tran if 0, first row has 2 tran if 0 switches. So, i 0 to t 0 and t 0

to out. You see i 0 to t 0 and t 0 to out. Second one has a tran is 1 and tran if 0, this is tran

is 1 tran if 0. This is i 1 to t 1 and t 1 to out. Similarly i 2 to t 2, t 2 out I t t 3 t 3 out. So,

this exactly implements this net list.

Now, here you see in this circuit there will be 6 inputs right, 4 inputs and 2 select lines.

So, in 6 inputs there can be 64 total combinations.

(Refer Slide Time: 06:44)

So, here we have simulated this also using a test bench, where we have instantiated this

multiplexer. All this 6 inputs have declared as reg, and in a similar style in a for loop we

are generating all this 64 patterns 0 up to 63. And these 6 variables s 0 s 1 i 0 i 1 i 2 i 3

we are assigning the value of k to that.

So, it will be converted to binary the last 6 bits of k will be assigned here. And you are

displaying the value of s 0 and s 1 in 2 bit binary cell 4 bit inputs in and the output. So,

this loop will be running 64 times right.

(Refer Slide Time: 07:34)

So, there will be 64 lines of outputs. So, I am showing it into slides this is first 16 lines.

So, in sel is 0 0 n is 0 0 up to this you see the first line in 0 is getting selected this is in 0.

Now, you can ask why the first one is coming as x. You see the reason is as follows see I

means you are displaying it here right and see sel is 0 in is 0. So, sel is 0 n is 0. So, you

are giving a delay of 5 and then you are assigning the value of k, but when you are

displaying it there is no delay there. So, this will be displaying the previous value that is

why before the assignment is done you are getting displayed. Similarly when select is 0 1

you see the second input is getting selected right; similarly 1 0, similarly 1 1 right fine.

(Refer Slide Time: 08:44)

Now, let us see slightly more complex example of a transistor level modelling. Now here

we are trying to implement a full adder using transistor level modelling. So, the top level

module says that for the full adder we are using a sum module and a carry module. So, f

a sum and f a carry. So, f a carry we are directly implementing using this CMOS nand.

(Refer Slide Time: 09:23)

You see CMOS nand is something which you have implemented, later we shall come to

it CMOS nand you already seen earlier right using 2 PMOS and 2 NMOS transistors can

implement a nand gate. So, this CMOS nand is already there we have already

implemented this.

So, using that we are using 6 nand gates to implement the carry, how you see for a for the

carry function.

(Refer Slide Time: 09:50)

So, how does carry function is implement? A and b or a and c in or b and c in. This is the

carry function. So, it is a 2 level and or circuit.

Now, you know any 2 level and or circuit is functionally equivalent to a 2 level nand

nand circuit. So, we are using this principle, this we are implementing as a 2 level nand

nand. So, in a first level we are connecting a b, we connect a and c in we connect b and c

in. Next level there has to be a nand gate there has to be a nand gate that will be taking

the 3 inputs, but our CMOS nand gate is only a 2 input nand gate. So, how to implement

a 3 input nand gate? 3 input nand gate we implement it like this. We take a 2 input nand

gate we do or not by connecting the same input and using another 2 input nand gate.

So, exactly we have done this, we have connected the first 2 to a and gate then we have

use used another nand gate for inversion and a third nand gate connected like this. There

are total 6 nand gates. So, exactly we have done or created that net list here, this you can

verify and t 1 t 2 t 3 t 4 t 5 will be this intermediate line there are 5 intermediate lines you

can see one 2 3 4 and 5.

So, I leave it as a exercise for you to verify that whether this net list as I have specified is

correct or not and which one is n 1 which one is n 2 and so on this you can see like a for

example, let me tell you one of them see this is n 1 t 1 a b. T 1 a b will be this a b is this

this is t 1 and this gate is n 1 right. Similarly with others you can identify it right.

(Refer Slide Time: 12:37)

Now, after we have implemented carry then we have to implement the sum. Sum at the

higher level you implemented using 2 x or gates.

(Refer Slide Time: 12:46)

Because sum is what? Sum is nothing but sum is a x or b x or c in. So, you can

implement it using 2 x ors say first you can x or let say a and b, you generate let us say a

temporary t 1 then use another x or connect c in to it you generate sum right.

So, we have used this kind of a configuration this net list to express f a sum in a

structured way. There are 2 x or gates one of them is taking a b, and generating t 1 other

is taking t 1 and c in and generating sum. Now these are 2 input x ors well, again 2 input

x or I have to implement using CMOS.

Now, let us see. So, how to implement a 2 input x? Or let say a b and out. So, the x or

function is given as a bar b or a b bar. So, again using 2 level gates nand nand realisation,

you can implement this using this is a bar b. Suppose this is your a you make it a bar

with a nand gate make it inverted a bar and b, this is b and a b bar this a you connect

directly here a and b bar. So, b you take make a knot of it b bar or. So, or 2 level and or is

equal to 2 level nand, nand. This will be your recovery net list 5 nand gates 2 input nand

gates. So, here we have exactly done that you see 5 nand gates.

Let us identify the gates here CMOS nand n 1 t 1 a. A a a is this one, this one will be t 1

this is n 1 second n 2 is b b and the output is t 2 this one t 2 b and b this is n 2. And n 3 is

a and t 2, a and t 2, this is n 3. And the output your calling t 3. And n 4 is b and t 1 b and t

1 this is your n 4 and output your calling t 4 and the last gate this is n 5 t 3 and n 4 a

generate out right.

(Refer Slide Time: 16:10)

So, this is how you design all of them using CMOS nand and of course, the fine final

transistor level CMOS nand is this. So, you have done a perfectly hierarchical design

with the transistor level to input nand gate as at the leaf, and using that 2 input nand in a

hierarchal way you have designed a full adder right.

(Refer Slide Time: 16:30)

So, again we have written a test bench. So, we have instantiated the full adder there are 3

inputs a b c in. So, again we have done this for loop for 7 times generated all values are a

b c in, and you are printed the values of a b c in together as a 3 bit number and sum and

carry.

(Refer Slide Time: 16:56)

So, when you are simulated the output is coming like this. Let say one let say 0 1 one if

we add them sum is 0 carry is 1 1 1 1 sum is one carry is 1, you can verify the others 0 0

1 sum is one carry is 0. So, it is giving correct result fine.

(Refer Slide Time: 17:15)

Now, we have seen that how we can use this kind of switch level primitives the

transistors, CMOS switches to design low level circuits gates and using gates you can

design more complex things of course. But as I said means if you are really into

designing circuits using low level CMOS or mos transistors, you need to understand the

concept of signal strength very clearly. Well, here as part of this course we shall not be

going to the very details of the signal strength, but what I told you earlier means I am just

trying to say the same thing. Suppose I use a primitive here which is let say rnmos

resistive NMOS ok.

(Refer Slide Time: 18:03)

So, there will be a gate there will be a source and a drain. So, this acts as switch. Suppose

I have a signal here let say the input I have a signal of strength, let say s 1. And this

switch is on in the control input I have applied logic one. So, the switch is on. So, the

output I am getting another signal which is of strength s 2. So, because this is resistive.

So, even when this is on there will be a resistance in series this s 1 this s 2 value strength

of s 2 will be less than the strength of s 1. There will be a degradation in strength you

have to remember this thing right.

So, this is something which also we mentioned earlier. So, in verilog there is a 4 logic

levels supported you already know 0 1 x and z. And 8 signal levels, this 8 levels are used

to model the various kinds of scenarios for real hardware. Like you think the strongest

signals will be the one which are directly connected to the power supply lines. If you

take a signal directly from v d d or ground those will be the strongest signals, you take

the output of a gate strength will be less you take the output from a mos switch which is

resistive this strength will be even less, you take a pull up or pull down strength will be

even less.

So, there are various circuit design scenarios where you can identify various different

signal levels and depending on that you can actually do a calculation of the signal level

the simulation or the simulate or does exactly that simulate or understands that how

signal strength values are degraded, and how they get modified as they passed through

different circuit modules, and they will provide you the calculation of the simulation

result accordingly right.

(Refer Slide Time: 20:36)

So, this is something again which we mentioned these are the 8 signal values which are

supported. Supply has the highest strength as I said then you say strong, pull, large,

weak, medium, small. And high impedance high impedance has the lowest strength high

impedance is something which is like floating. A wire floating I just a float wire in my

hand I say what is the voltage here there is no voltage because it is not electrically

connected to anything.

So, the signal strength of the high impedance signal or a line or a variable will be the

lowest and the supply values one and 0 that will be the highest. And there are many I

means intermediate values, there are some strength which are used for storage some used

for driving other gates. So, I am not going to the details of this, but the point to notice

that I also mentioned this earlier if 2 signals of unequal strengths drive a single wire then

the stronger signal will prevail. Suppose there are 2 modules the output of the 2 module

is driving a single wire, but the output signals they have different strengths.

So, the signal which has highest strength, that will over ride the other and the output

value will get it, but if they are of the same strength and their values are conflicting then

the output will become indeterminate x fine. So, for mos level circuit modeling this

multiple values of signal strengths are useful. Like I will also mentioned this that when a

signal will pass through a resistive switch it is strength will reduce. But the details as I

said details of signal competition the kind of conventions that are followed, that we have

not discussed here.

(Refer Slide Time: 22:49)

So, the point to note finally is that well we use transistor level modelling for mainly

simulation. For those of us who are into transistor level design who have design a circuit

at the level of transistors, who want to simulate and see that well my design is correct or

not you can use these facilities which are provided in verilog for switch level modelling

to do that, but if you target is for synthesis. For example, if you are doing an a p j

mapping see a p j there is nothing like mos there is nothing like mos transistor that

everything you can map into are some modules and blocks. There call c l b is

combination logic blocks some flip flops and so on.

So, synthesis tools will not be accepting any design which are at the level of the

transistors. So, this is true not only for a p js, but also for a 6. For a 6 I told you typically

the designs are created by picking up the cells. From a technology library and the

technology library already has some very well optimised transistor level layouts. The

synthesis tool will not allow you to manipulate on that and give a different net list of the

transistor level of course, let me tell you there are some designs where you may have to

design something at the level of transistors. You may have to create a layout, but there

are separate low level tools and software available for that. You do not use a high level

synthesis tool that takes verilog and translates in to hardware for that purpose ok

So, most of the synthesis tools not most means almost all of them you can say do not

support switch level modelling. Because the final hardware that is generated it is not,

generated from the switch level models you have specified they are usually taken from a

library ok.

So, circuits at the transistor level is not required to be specified if your final target is

synthesis all right. So, with this we come to the end of this lecture. So, we have seen very

briefly the feature that is available in the verilog language to model circuits at the level

of mos transistors, this is called switch level modelling.

Now, in the next lectures we shall be taking a case study a fairly complex case study of a

processor. And you shall see how you can implement it using a pipeline fashion using

verilog.

Thank you.

