Hardware Modeling using Verilog
Prof. Indranil Sengupta
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 34
Pipeline Modeling (Part 2)

So, in our last lecture, we had seen an example where we can map a given computation
into a pipeline and implemented in Verilog. In this lecture, we shall be taking up another
example slightly more complex and look at a more conservative and a more proper way

of clocking that will lead to correct operation without any race condition possibilities.

(Refer Slide Time: 00:51)

Lecture 34: FIFELINE MODELING (FART 2)

FROF, INDEANIL SENGUFTA

(Refer Slide Time: 00:56)

A More Complex Example

« Considera pipeline that carries out The Tollowing stage-wise aparations

= Ingieis: Three register addresses (rsl, r5d and o), an &L function (fwnc), and a
marmary address (o)

= Stope 1: Read fwo 16-BiE numbecs fram the regisiemn peacified By “rl” and "2
and slgre Eham in A &nd &
i & Perlonm an ALL operatkon on A and 8 specilled by “func”, and svome iU in 2
Stenge 3: Write the value of £ the register specified by "o’
ferge 4 Alss wiite tha vibie of 2 in mamory Beatian “aday

PP Col il
T EHARAG S W r_“-ulp:.-":rm”j IS, Hasifware BModeling Livng Verlog

So, this is the second part of our lecture in pipeline modeling. Now, here the example
that we take is actually a 4 stage pipeline example. Now here, you do not try to
understand that why we are doing this. It is just some example stages and the reason we
have taken this example is that later on; we shall be looking at the complete design of a
processor. Processor means a central processing unit or a CPU; how it can be
implemented in Verilog; in a pipeline fashion, there some of the concepts that I will show
in this example will be used. So, just to get a feel; so, we have incorporated a few of the

complex blocks in our design. Here, let us see what we have done.

Here we are assuming that there is a register bank and ALU. So, I will explain this first

thing to notice that in this problem.

(Refer Slide Time: 02:01)

I am assuming that there is a register bank register bank we have seen that you can have
multiple registers stored here and you are assuming that there are 2 read ports and 1;

sorry, 2 read ports and 1 write port, yes.

Now, in order to activate them, [am assuming that you have the control signals; 1 is read
source 1, read source 2 and register source 1, register source 2 and register distribution.
So, depending on rs 1 and rs 2; the corresponding registers will be read here and here and

depending on rd the values applied here will be written into the corresponding register

Now, we shall see how this register bank, let us say if there are 16 registers in this
register bank, then all this rs 1, rs 2 and rd will be 4 bit numbers because you can specify
one out of 16 registers in 4 bits 0, 0, 0, 0 to 1, 1, 1, 1 register number 0 up to register

number 15.

Similarly, we are assuming that we have a memory. This is a very simple example of a
memory, we are assuming that there are 256 words in the memory and each word is of 8
bits. So, since there are 256 bits in the memory, there will be an address, this will be 8
bits in size because we have 8 bits of data. So, if there are separate data out and data in
lines; they will be 8 bits and 8 bits also this is 8 bits because 2 to the power 8 is 256 that
is why you need to 8 bits of address and this is 8 because data size is 8 and addition you

have the control signals; read, write, all those are there.

So, with this, we are stating the problem; what we are trying to do? So, the inputs to our
pipeline will be 3 register addresses that will be corresponding to the register bank, there
is also an arithmetic logic unit an arithmetic functional block where we specify some
function; what kind of operation you want to do and for the memory we supply a

memory address.

So, you see here; there are 3 functional units, we have talked about a register, we have
talked about a memory and also there is an arithmetic logic unit arithmetic and logic unit.
So, ALU will be taking 2 input data, it will carry out some computation and what

computation that is determined by a control word called function, right.

So, these 3 kind of blocks are required in this pipeline implementation. So, the inputs
will be what are the register addresses; what is the ALU function; we want to do and
what is the memory address and what are the computations that we have to do; let us see
in stage one; we read 2 numbers from the register bank, we assume that all numbers are
16 bit numbers in the registers; registers are 16 bits depending on whatever you have
given in rs 1 and rs 2 we read 2 16 bit numbers and store them in 2 temporary registers a

and b.

Stage 2; we perform the ALU operation, we operate on a and B and what operation it
depends on this func; what function it can be addition, subtraction, whatever I have
specified and after the ALU operation is done the result is sorted again in a temporary

register Z.

In stage 3, what we do the result Z, we are writing back into the register bank depending
on whatever we have given in rd destination register and in stage 4, the same data Z; we

are also writing into memory at address addr, right.

(Refer Slide Time: 07:16)

The Assumptions
Thera is a register bank containing 16 16-bit registans
= d-Bals ard feguied Lo specily & regiiled sddrais
= 2 registe Is and 1 register write can be performed every clock cycle
= M@gister addreited are il i, and "
= Assume that the memory is organized as S50 x 16
-~ B-bits are required to specify memory address
= [wery memary locstion cantaing 16 bits of dats, which can be read in & single
Elesck eyl
= Memory sddress specifled as "o

T Cobil i
0T KHARAGI M CERTIFRCATION COLINGES Hasiwiare BModeing Lising Verlng

So, this is just an assumption we are making these are the stages of computation; let us
see the assumption that we have made is that the register bank, we have said it consist of
16-16 bit registers because there are 16 registers, we need 4 bits to specify the register
address. So, rs 1 and rs 2 and rd will be 4 bits and we assume that 2 register reads and

one register writes are possible every cycle; there are 2 read ports and one write port.

Well and because the data size is 16 bits; we have assumed and the memory also has to
be 16 bit word; here we have said that the memory is 8 bits, but actually if to make it
compatible; this has to be 16 bits. So, let us consider these to be 16, right; data bus size

will be 16.

So, for this 256 word memory; this 8 bits will be required to specify the memory address
and this memory address is specified by this addr. So, addr is an 8 bit quantity and the

data will be 16 bits in size.

(Refer Slide Time: 08:29)

Thie ALL function is selected by a 4-bit field "func”, as follows
OO AL 0L SUB DO10: RLUIL
0D011: SELA 0100: SELB 0101 AND
00 10; On 0111: XOR 1001 WEGA
10E8]: NEGE 104 SEA

1011: SLA

T o il
r_u1‘Ir_nnr_m;r_l_rlux Hasiware Modeling Livng Verlog

T EHARAG |

Now, the ALU functions; we assume are as follows because func is a 4 bit field and this

4 bit; well, we have not specified for all possibilities there are 000 up to 1011 means

there are 12 functions which are defined; let us see what functions are there.

(Refer Slide Time: 08:57)

(]
pop: Z=AEE
sp: z=AB
s 2= Atl
SFLN: ZF': \&

: Z°E £
8 £7 a8 fun
'“r:;_h =5ﬁ'rﬁﬂ
:II:I!.: 2 FR 3

= mh
NEgh: BT

: z;ﬂ'u
&
*;w 7= A&l

=y

ADD means let us look at it like this; suppose, this is my ALU, the 2 inputs are A and B

and the output is C. So, let us see one by one ADD 000 means ADD; ADD means Z
equal to A plus B 0001 means SUB; SUB means Z equal to A minus B 10 means MUL;

MUL means multiply; MUL means Z equal to A multiply B, then fourth is select a cell a

means if you select cell A, then the value of A will be going to the output; you are

selecting A.

Similarly, there is an option for selecting B, if you use cell B, then output will be B, then
you have an option AND and OR and XOR. So, AND, OR and XOR; so, for and Z will
be bit by bit; A and B or it will be A or B and for XOR; it will be again bit by bit
exclusive or A XOR B, then you have a function NEG A and NEG B; NEG A means it is
just not bit by bit negation of A and NEG B means bit by bit negation of B, right and the
last 2 functions are shift right A and shift left A.

So, if you use S r a; this will mean you take A and shift it right by one position and if it is
shift left A Z, it will be a shift left by 1 position. So, these are the 12 functions that the
ALU supports and this is controlled by the input func 4 bit value, fine.

(Refer Slide Time: 11:42)

A4

FdEmary
3

TR v I
T KHARAG MM CRNTIFECATION COiiEs Hasilwiare BModeling Lisng Verlag

Now, this is our overall pipeline diagram based on whatever we have said let us see this
rs 1, rs 2 rd func and addr; these are our inputs. So, we have a register file in stage one
based on whatever you have given in rs 1 and rs 2, we are accessing the registers and

values are read into A and B nothing else is has been done in S 1.

In S 2; we are doing some functions on these 2 values which have read from the register

bank register file A and B which are coming; they will be the inputs of the ALU and the

function that we have given here that will be forwarded and that function will be

controlling the ALU operation and the result will be Z.

In stage S 3, we are writing in the register file, we are showing it as dotted because this is
not a separate register file. It is the same register file; I am just showing it that it is being

written here that is why dotted.

So, what we are writing, we are writing the value of Z and while we are writing that is rd
register destination. So, this has to be forwarded up to here and then last stage we have
the memory write where what we want to write the value of Z. So, Z has to be forwarded
here, from here to here and address has to be forwarded all the way from here; down to

here. So, it is a 4 stage pipeline where these operations are going on, right.

(Refer Slide Time: 13:22)

Clocking Issue in Pipeline

+ [t is important that the consecutive stages be applied suitable clocks for
cofrect operation
I'wo options
a] Use master/sizve flip-flops in the latches to svaoid race condition
Bl Use nan-overlapgng IWo-phake clock For the Conseculng pipelind ilages
5 5 5 5 5 5 5 5 5 5 5
ekl [l [l l

clkz | | 1] |

TR ol il
0T KHARACIN M CRNTIFEATHIN CTH IS Hasdiaie bndeing Litng Verdng

So, let us see how we can code it in Verilog, but before that there is an important
clocking issue that I have said during the last lecture that we have to apply clock in a
proper way, we mentioned that the 2 of the safe way is used to either use master slave
flip flops or use non overlapping clocks for the consecutive stages. So, if we use non
overlapping clocks, then you can also use latches rather than clocks which are triggered

by edges.

Non overlapping; an example is shown here clock 1 and clock 2; you see clock 1 is high

here, again it is high here, again it is high here. So, the clock period is 20 from here to

here 20 and clock 2 is high when clock 1 is not high and there is a period in between
where both the clocks are in active both are 0. So, there are 2 clocks sometimes clock 1
is high sometimes clock 2 is high, but they are not overlapping, they are non overlapped
and in order to take care of variable delays like clocks queue, there is also a gap in
between; this is a very safe kind of a clocking scheme where we have non overlapping

clock with the safe margin in between this is what is meant by 2 phase clock.
Now, in a pipeline; what we are intending to do is as follows.

(Refer Slide Time: 14:58)

In this example, we have 4 stages, right, this is stage S 1 then stage S 2, then stage S 3,
then stage S 4, this we are ignoring; here, we are just supplying the inputs. now out of
this 4 latches; what we are saying is that latches of flip flops; whatever we say that we
will be clocking, these 2 by clock 1 and we will be clocking these 2 by clock 2 which

means we are alternately clocking the latches using the 2 phases.

Because we are doing that there is no scope on an overlap because when this latch is on
it is guaranteed that this latch is not on. So, whatever S 2 is computing, it can never reach
here because this latch is off because of this non overlap in nature, this kind of complete

isolation of one stage from the other can be achieved.

So, in our Verilog test bench that we see or in the implementation also, we shall be
assuming that we are having this kind of 2 phase clocking let us look at the Verilog code

now.

(Refer Slide Time: 16:30)

module pipe_esd (Eout, Fsl, rsd. rd. fune, addr, elkl. =ikd)!

input [J3:0] zel, zel, rd, func;
input [T:0] =addr;

input write, clkl, clkZ; £ Two-phass clock
Sutpit [15i0] BEouWt!

Pipeline
reg [18:0] 113 A, 113 B, L33 _E, Li4_%; P
reg [3:0] L1Z rd, L1Z_fune, LI3_rd: Modeling
Eeg [Ti:O] L12_addr, L33 _addr, L3I4_addrc;

Eeg [1816) Feghank [9118); // megister bDank
wodg [I6:0) mam [O:3RE] A 38d x 1d mamory

assign Eout = L34 _E:

WPFTEL CHL I
0T KHARAG W CRNTIFECATION COLiaES Hasilwiare Modsling Lisng Verdog e

&

This is our pipeline description. So, we have the final output Z out; Z out again, this is a

16 bit quantity, we are assigning it from the final value of Z and rs 1, rs 2, rd func addr;

there are all inputs and of course, there are 2 clocks; clock 1, clock 2.

Register select and also the function select these are all 4 bit quantities and memory
address because there are 256 words, it is 8 bits and write of course, it is not required

actually write can be there clock 1, clock 2.

Now, these are the intermediate register variables, we are defining you see this A and Z
these are holding the results these are 16 bit quantities, but rd and func; these are 4 bit

and address is 8 bits you see here you just go back to that diagram.

(Refer Slide Time: 17:42)

51 52 53 5a

& _ .
il Register ’ ~ h|-TH L Register
i3 Elim n — _'_ File PlErmary
— "5 T

il

T, Coiil il
0T KHARAGIN M CENTIFRCATION COLINGES Hasidwiare BModeling Lising Veriing

A B rd func and address are to be stored in L12 Z rd and addr in the L23 and Z and addr
in L34. So, we are we have defined so many variables and the convention is as same as
we followed in the last lecture, it will be L12; underscore A, .12 underscore B, L12

underscore rd and so on, right. So, same convention we have followed.

And we have defined a register bank and we have defined a memory separately both
declarations are similar both are defined as a 2 dimensional array of registers. In fact, so
in the first case, we have defined that there are 16 registers each of 16 bits. In the second,
we have declared a memory of 256 words each of 16 bits and the final L34 Z which is

been computed that is assigned to the final output Z out.

(Refer Slide Time: 18:50)

always P (possdge]

bagin
Llz_A = #F reghank [Eal)
Lid B <= §2 Eegbank[Esd)
Lid_wid = W3 wd;
Lid _funo <= §I funa;
L12 addr <= #2 addr; Ff #d GPRORE 1 &

and

T Coivi il
0T KHANAG M CENTIFECATION COLINGEL Hasdwiare Modeling Lising Veriiog

-
W

Now, you see; now how we have done; just I am showing the overall thing you see; this

is the first stage, this is activated by clock 1; this is the second stage; stage 2 activated by
clock 2; stage 3 activated by clock 1, stage 4 activated by clock 2. So, we are alternately
applying clock 1 and clock 2 to the successive stages clock 1, clock 2, clock 1, clock 2;

like that this is the first thing we have done here.

And if we look at the stage definitions, it is straight away it follows from whatever we
have done like you see at the diagram; once more first stage, what we are doing? This A,
B, we are reading from the register file from address rs 1 and rs 2 rd; we are forwarding

func, we are forwarding addr; we are forwarding; now see I have done exactly that.

This L12 Ais reg bank rs 1 reading from the register bank L12 B, reg bank rs 2 read, we
are forwarding func; we are forwarding addr, we are forwarding and here we are

assuming that everything takes a uniform delay. So, all 2, 2, 2; we have shown here.

Second stage second stage we have an ALU and some signals are forwarded like you go
back; once more you see rd is forwarded addr is forwarded remaining thing is the ALU

function it takes A B and func and generates Z.

(Refer Slide Time: 20:27)

ALWAYE B | Aegedge
bagin
cans {funcs)
0: L33 E <= #2 L12_A + L12 B

1: L33 _E <= #2 L12_A - L12 B
21 L33 E <= #2 Li12_A * L1 B
3: L33 E <= @3 Li3_A

4: 131 & <= @#% E1Z_N;

8: L23_E «= #2 L12_A & L12 B
8 L23 E <= @§2 L13 A | L1Z2_B
T L33 B <= #% Li3I_ A " LiZ B
B L33 E <= W% - L13 A;

B: L33 2 <= @#F = L1Z_N;
10: LIJ_E «= @2 L1Z A == 1;
11! L33 _E <= §2 L12_A =«]
default) L33 & <= @#F 16 hEEEE)

andoase

L23_rd <= §2 L1Z_zd;

L23_addr <= #2 L1Z_addr:

and

So, the ALU function is here case func. So, if it is func is 0; that means, 0, 0, 0, 0, then
you do addition; you add store in Z, if it is 1, you do subtraction, multiplication, select A,
select B AND or XOR negation of A negation of B, shift right A, shift left A and if it is
mean any other value, these are undefined, then Z will be x x x x and the other 2 values

we are forwarding.

This is the definition of state 2, stage 3 is very similar in stage 3; what we are doing
again, let us go back in stage 3, we are writing into the register file and in stage 4, we are

writing into the memory.

(Refer Slide Time: 21:24)

always § (posadgs ¥
bagla
Faghani [L23 Fd) <= #2 LI3 E;
Lid_% «= #3 L33 _E
Li4_addy <= #§3 LI3_sddr; ff =% STRGE 3 **
and
alvays B inegedge]
b i
mam[LY4_addr] <= §F L3I4_E; ff &% GTROE 4 &4
and
o ndmodu le

T, ol il
ERRTIFECATHIN COLINSES Hasilware Modeling Lisng Verlog

So, we are doing exactly that here in stage 3. So, whatever is the value of Z you have
computed we are writing into reg bank where the address is L23 rd and Z, we are
forwarding addr, we are forwarding this will be requiring for the memory write and in
the memory lastly the value of Z which has been forwarded that is been written into

memory L34 addr.

Just one thing here we have mentioned an input write, but actually write is not required,

this write you can emit this here; there is no write, fine, there is no write.

(Refer Slide Time: 22:18)

madlile pipsd vest

wirs [15:0] B T — -
rag [3:0] 1 rd, fun
pey |10 N } PIPE"HETE'Et
wig olhl, alkd
n
intagei k Bench
pips szl MYPIFE (¥, rsl, rsd, rd, fun: addz 1k1l, =lkZ)
initial
Vs i
alkl = @; alk¥ = @
rapEat [F0) ff GEnBrating two-phass oloak
begin
5 oikl 1 #% olkl = 0
5 olk? = 1 % olkd = 0
ol
aiull
initisl
for (h=0; R€16: R=hill

HYPLPE , peglan | b & Ff tritialise registers

Now for this pipeline, let us try to write the test bench. So, here we have instantiated our
pipe this is the output rs 1,, rs 2, rd func addr are the inputs and the 2 clocks. So, these
are declared as reg because we will be initializing them 4 bits. This addr is also 8 bits reg
clock 1, clock 2 is also reg, but Z is the output let us say it is a wire 16 bits and we have

declared an integer k for the purpose we will see.

First thing is that let us see how we are initializing the clock you see clock is 0; clock 1,
clock 2, both are initialized 0 at time 0 and we are generating 20 because 20 is enough
for this example, we have given repeat 20. So, what you are doing? So, I am just writing

the code and explaining; what is happening?

(Refer Slide Time: 23:17)

So, the Verilog code; we have written is repeat 20 and inside this, we have given a gap of
5 clock 1 equal to 1. Again a gap of 5 clock 1 equal to 0, then again a gap of 5 clock 2
equal to 1, again a gap of 5 clock 2 equal to 0, let us say what happens here.

Let us assume these are our time scale of 5, these are our time scale of 5, 5, 5, 5, these
are gaps of 5; this is 5, this is 10, this is 15, this is 20, this is 25, 30, 35, 40 and so on,
right.

Now, initially and this is 0 of course, this is 0, it starts with 0, right initially both clock 1

and clock 2 are Os, this is clock 1 and this is clock 2; both are Os, this is also 0, this is

also 0. So, at time 5, we are making clock 1 equal to 1. So, at time 5, we are making

clock 1 equal to 1. So, again after a delay of 5; we are making clock 1 equal to 0.

Clock 2 as 0 so long; so, again after a gap of 5; we are making clock 2 equal to 1; after
gap of 5 clock 2 equal to 1 after a gap of 5 clock 2 equal to 0 this. So, clock 1 is 0 in the
meantime. So, this we repeat. So, again after a gap of 5; we make clock 1 equal to 1 even
after gap of 5 clock 1 equal to 1; after a gap of 5; 0 again after a gap of 5 after this make
this one make this one you see; we have generated a perfect 2 phase clock like this right

just the earlier diagram we showed. So, we are generating a 2 phase clock here.

(Refer Slide Time: 25:41)

madlile pipsd vest

wirs [15:0] E:

reeg [3:0] rel, e, od, fun
peg [7i0] addis PIPE"ﬂETEit
vy wlkl, olkd
n

integes k Banch
pips ax? MYPIFE (¥, rsl, ral, rd, fanc addr, olkl 1EZ}
imitial

Vewj i it

alkl = 0; olk¥ =0

repmat [F0) f¢ Generating two-phass olook
Bagin
5 olkl i 5% olkl 1]
5 olh? = 1 % olhd = 0
el

imitiml
for (h=0; R<l8: h=k+l)
HYPIPE . coglank [k b

And in this initial block, we are initializing the register bank you see register bank is not
accessible directly as a parameter. So, we are accessing it like this my pipe is the

instantiated module dot reg bank was the variable which was declared inside it, right.

You see inside it there is a reg bank, right. So, we are referring it like this my pipe dot reg
bank, in this for loop k goes from 0 up to 15 reg bank k equal to k which means register
0; get 0 register 1 gets 1 2 gets 2 3, gets 3, like that you are initializing register 15 gets

15, this is how we are initializing registers.

(Refer Slide Time: 26:34)

=T
L] ral 1 a2 5 rd = 10; fund = 07 &y = 128 £ ADD
X0 ral 1 rad B xd 1%; funo = 3 ardir 1d&: ff ML
#3206 pel 1@ ud n pd = 1d; Fune = 1 aebidy = 128 £ mum
LEL] 1 7 3 [will = 13 Fianas = 110 sl = 137 £ BLA
LED] i 0] B wld = 15 Puna = 1 aibily = 139 £ AL
Lk i 1z 2 13; wd = 14; func = 0 by = 130 £ ADD
®E0 for (R=125; RO131; k=ksl]
Bdiwplay [“Hom[%3d] §3d™, k., H¥FIFE.mam[k]}

imivaal
bagin
Schempifila ("pipsd.vod™)
Sdumpvars (0. pipad tast)
Imonibor ("Timei &3d, F = 85d", Suims, 2)
#A00 Hfimis I
i

andmoduls

Then in this initial block, we are applying some sample inputs. So, we are giving a delay
of 5 and after the delay of 5, we are giving 20, 20, 20 gaps. So that next clocks are
applied. So, what I am doing; just giving rs 1 equal to 3 and rs 2 equal to 5; that means,
we are reading from registers 3 and 5. So, what we expect here register 3 contains 3
register 5 contains 5 that is all we have initialized, right and func 0 means add. So, 3 and
5 result will be 8 and this result 8 will be storing in register number 5 as well as memory

address 125.

Similarly, next one is 3 and 8. So, register number 3 is still contains 3 8 still contains 8
and the function is multiplication 2. So, 8 into 3 is 24; this 24; you are storing in register
number 12 as well as here 126. So, in this way you have some examples and at the end
after everything is over here in a for loop after some delay you are displaying the
memory contents that what is there in memory starting from 125 address onwards, right

and also we are monitoring the value of f time and f.

So, if you run this simulation, you will see the output coming like this you see first
output, I had said the result will be 8 second one will be 24; this we can verify because
you see you have already modified register number 10 rd equal to 10, it becomes 8. So,
in the third one when you are accessing register 10, it is not 10, it has become this has
become 8. So, 8 and 5 it is subtraction 8 minus 5 you see result is 3 and you can verify

the memory contents also they also contain the same values, right.

(Refer Slide Time: 28:42)

Timm: o,
T il 27,
Simulation Tima: 47,

¥

F

r 24
HESU"S T o 8T, F

¥

r

r

L]
T ; By, = 14
Tima: 107, =
Tima: 127, = 138
Ham[1l258] = A
Mam[l38] = 24
Mam[127] = 14
Ham[lZ8] =
Ham[l29]) = 3
MHam[130] =

T o il
0T KHARAGMM | CENTIFECATION COLINGES Hasdwiare Modeling Lisng Verling
|

é

(Refer Slide Time: 28:57)

[s ilyiwl |

So, if you look at the timing diagram using the same thing you can observe. So, you can
see the 2 phase clock very nicely, this is 2 phase clock, this is the values of rs 1, rs 2 and
rd you have given 3, 5 and 10 function; you have given 0 address, you have given
something you see the test bench the address is 125; first 1, 3, 5, 10, function 0 address
125. So, 3, 5; Ais 10 0 7; D is 125. So, this result will be final 0 0 0 8. So, you need
some delay for that. So, that pipeline delay will required and at the end of the third clock
you will be generating this result and after that result will be generated once every clock,

right. So, this is exactly what is happening here.

So, what we have seen in this lecture is that this is the more recommended way to
implement a pipeline that you use a 2 phase clock, but in the latches you can either use
edge triggered in this Verilog code; we have written we have used pose edge triggered
flip flops, but you can also use level triggered latches there as long as they took clock
phases are non-overlapping and they sufficient gap between them even if we use non
overlapping latches means those are called transparent latches not edge triggered there is

no problem it will still work very fine.

So, we shall see later as it said with the more compressive example the design of a
processor; there we will see how we can implement the instruction execution hardware
data path of a processor in a pipeline fashion, there we will be following some of the

lessons that we have learnt over the last 2 lectures.

Thank you.

