
Hardware Modeling using Verilog
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 32
Basic Pipelining Concepts

So, you recall whatever we have discussed during the course of the last few weeks. We

have seen various ways of designing digital circuits and systems, combinational circuits,

sequential circuits; very simple circuits, slightly more complex circuits. Now, one can

you should remember whenever we are trying to design high performance systems,

where the speed of operations and something called throughput; number of calculations

that we are able to do per unit time that becomes important. We often go for a technique

called pipelining, so we shall be looking at several examples of pipelining, how we can

model pipelines in verilog and so on.

But in this lecture, let me give you a very brief overview about the basic concepts in

pipelining, what it is and how does it give us an advantage in terms of speed up and

increasing throughput. So, the topic is basic pipelining concepts.

(Refer Slide Time: 01:33)

Now, what is pipelining? Pipelining essentially is a method for overlapped execution of

several input sets. Like what I mean to say is that, you see whenever you have some kind

of competition; something you want to compute, there will be some input data you are

applying and you are finally, getting some result.

Now, your computation maybe such that; you have to do the same kind of calculation on

a large number of input data, so the data are coming one after the other. So, in that case

what we are saying is that the computations that are going on; for the consecutive data

items, they are somehow overlapping in execution. Because you see conventionally

without pipelining what you will do?

First data comes we finish our computation; generate the result then only we take the

second input. Again we do the computation; generate result then we take the third input,

there is no overlap. Now, what I am saying is that; before the computation on the first

data is complete; we have already started something on the second data. This is

something which is called overlapped execution; we shall see how.

So, this overlapping normally we just express in terms of something called sub

computations or stages. Well I shall be explaining through some examples; so, what you

are saying is that we have some computation.

(Refer Slide Time: 03:27)

Let us say we represent it like this and as an alternative, we divide the computation into

smaller pieces called stages. Let us say there are k number of stages; this is how what we

are doing the partition. Now, in this kind of a partitioning the way pipelines are

implemented, the cost of implementation does not increase appreciably; very low

increase. But the advantage is that we shall see how it comes, the speed up can be very

significant; it will almost be equal to k how many times we have divided the computation

into the number of partitions.

Now, in a computer system; pipelining can be used to speed up operations in various

different places; when instructions are executed this is called instruction execution.

When some computations are going on let us say arithmetic computation addition,

subtractions, multiplications there also we can use pipelining to speed up and memory

access. When a large number of memory accesses are going on consecutively using

pipelining; again we can speed up the overall access time of the memory using some

efficient technique.

(Refer Slide Time: 04:57)

Let us take a real life example to illustrate how pipelining helps; this is nothing to do

with a computer system or a digital system. Let us take this rectangular box indicates

some operation that you are doing. What is the operation? This corresponds to machine

M; let us say which can wash, dry and iron clothes one at a time. Suppose, you have

manufactured such a machine which will take one cloth at a time, it will automatically

wash, dry and iron and it will give you the nicely ironed cloth as the output.

Let us say the total time taken for this W, D and R steps all taken together is T; capital T.

So, if we have number of clothes, so how much time will it take total to complete for all

the N? For every cloth; we need T, so for N clothes we need N multiplied by T; this we

represent as T 1; means I have a single partition one is that 1.

Now, let us say that well you have thought that well instead of a single machine doing

everything; because you see any way washing, drying and ironing are 3 different things.

Washing involves soap and water, drying involve heater blowing air and so on and

ironing involves pressing and so, on. So, there is nothing which is repeated in the steps;

they are as such different. So, you identify that and what you come up with that well let

us now do this.

Let us divide this machine into 3 smaller machines; one which can only wash, second

which can only dry, third which can only iron. Well, now you can argue that well because

we have divided the functionality and there is very little lower lap; the total cost does not

increase appreciable; of course, there will be little increase in cost because we have to do

a necessary packaging, we have to put it inside a nice cabinet and so on, but whatever

they is there inside; the actual electromechanical systems they are not much different. So,

we split the machine into 3 smaller machines M W, M D and M R; these 3 boxes, which

can perform specific tasks.

Now here what happens let us see; now the total time was T. Let us say now; this

individual stages; they will take one third time each T by 3, T by 3, T by 3. So, the total

time is still T; now see when a cloth comes, you wash it. After washing is complete; you

give it for drying, now you see while drying is going on; this washing machine is free.

Now, the second cloth can be given for washing. Similarly when the first cloth goes for

ironing, this second cloth can come for drying and the third cloth can go for washing. So,

I will show you how means if we have a mechanism like this; this is called pipelining. As

if there is a pipe; the clothes are flowing through a pipe and there are 3 stages; it first

goes to W, then to D, then to R and then it goes out.

So, we will see how this calculation comes; for N clothes the total time taken here will

be 2 plus N multiplied by T by 3.

(Refer Slide Time: 09:10)

So, in the first case; the time was N multiplied by T and in the second case with 3 stages

the time is coming as 2 plus N into T divided by 3.

Let us assume that the value of N is very large; let us say for example, I am washing

1000 clothes. So, with respect to 1000; you can ignore this 2; 2 is negligible. So, what

you can say? You can say that your T 3 is approximately one third of T 1; T 1 was N T; T

3 is approximately N T divided by 3. So, you have gained a 3 time speed up without

investing on 3 machines; you see to get a speed up of 3; what you could have done

initially that big machine you could have bought 3 copies.

Which means you would spend money 3 times; 3 times the cost, but now you have not

done that; you have divided that big machines into 3 parts. It will involve a marginal

increase in cost, but still the performance is improving 3 times; this is the essential idea

behind pipelining; without increasing the cost appreciably we are getting very

appreciable to speed up.

(Refer Slide Time: 10:54)

Now, let us see how this is coming. Let us look at the axis of time; this is washing,

drying and ironing. So, cloth 1 comes here; cloth 1 comes for washing. So, it takes T by

3 time; after T by 3 cloth 1 comes for drying and the second cloth comes for washing;

this requires again T by 3, then cloth 1 comes for this ironing, clothes 2 for drying, cloth

3 for washing.

Now, after T by 3 cloth 1 is done; so, cloth 1; you can take out then cloth 2 comes here

cloth 3 comes here; cloth 4 comes here. After T by 3; cloth 2 can be taken out then cloth

3; can take. You see after this pipe is full; after every T by 3, T by 3, T by 3 time you can

take out one cloth. So, one cloth per time T by 3 is being generated as output.

So, for one cloth the first cloth will take T by 3, T by 3, T by 3; 3 into T by 3. Second

cloth will take one more time; 1, 2, 3, 4; 4 into T by 3, third cloth will take 5 into T by 3.

So, proceeding in this way the N th cloth will take 2 plus N T by 3; that is what we

showed in the expression.

(Refer Slide Time: 12:22)

Now, extending this concept to a processor; suppose I am building a computer, I want to

speed up instruction execution; that is called a processor pipeline. So, instead of

executing one instruction at a time; I am dividing the total execution process in two

stages and I am overlapping the execution in the same way.

So here again I am just repeating; so, we had two alternatives, one is we can repeat the

replicate the hardware k times, which also will increase a k times increasing the cost.

But, secondly a second alternative we are not replicating rather you are splitting the

hardware into smaller pieces; these are called stages very nominal cost increase. But one

thing is required which we have not considered, you see you consider the washing

example.

Suppose, there is a washing machine; there is a dryer, suppose washing machine has

finished with a cloth, but dryer is not yet ready; it is still drying the last cloth. So, that

cloth has to be temporary put in some kind of a tray or a buffer. So, there has to be some

trays between the machines which can temporarily stored the clothes before it can be fed

to the next machine.

So, this is the need for buffering. So, we need a tray between washing and drying

machines and between drying and ironing machines. So, in the same way when we talk

about a hardware pipeline; we need a latch or a register between successive stages which

can store the latch, store the values; before it can be processed by the next stage.

(Refer Slide Time: 14:28)

This is how a hardware pipeline will look like. So, a total computation I am dividing into

k number of stages S 1, S 2; up to S K; there are latches between the stages and there is a

clock; clock is activating the latches. So, what is the purpose of the latch? You see when

the first data comes, the data get stored in this latch and S 1 is working on that.

After S 1 has finished doing the computation; the result it will be storing in this latch. At

the same time, the next data will be stored on this latch. So, when S 1 is working on the

second data; S 2 is working on the result of the first data. Now, if this latch was not there;

then what might have happened is that while S 1 is working on the next data, the output

could be changing.

So, the input of S 2 could also be changing resulting in wrong computation. So, we are

using the latch to hold temporarily the previous data so that while S 2 is processing the

data. The data does not change; similarly for the other stages and this latches are

typically master slave flip flops, which serve the purpose of isolating inputs from

outputs. And the stages S 1, S 2 to S K; these are typically combinational circuits; we

shall see examples later.

So, when clock is applied everything gets shifted to the right by one place. So, S 1 goes

to S 2, S 2 goes to S 3, S 3 goes to S 4 and so, on. So, when clock comes; data in a

pipeline will move forward in a lockstep fashion; this is what really happens.

(Refer Slide Time: 16:32)

Now, talking about the structure of a pipeline; so, a pipeline can look like this as we have

seen; it is called a linear pipeline. The stages are connected in a linear fashion; the output

of one goes to the input of the other in exactly in a straight line fashion.

But for more complex systems of course, here we shall not be considering such

examples. Pipelines can be non-linear also meaning that there will be stages; let us say A,

B, C but data can flow not necessary from A to B, B to C; data can go from A to C also

sometimes, C to B also and C to A also. So, there can be multiple paths the data can take

for example, a possible sequence can be A, B say A, B; C B; C A; C A then it comes out;

from this path. So, this can be a possible sequence of data computation, but these are for

more complex cases; forget this for the time being.

(Refer Slide Time: 17:48)

Now, you see these are some example pipelines; now how processing is carried out, this

is depicted by a data structure which is called a reservation table; what does reservation

table show? Reservation table shows the utilization pattern of the stages; like in the

various time steps; how are the pipeline stages utilized, in time step 1; which stage you

are using? In time step 2; which stage? In time step 3; which stage? And so, on; this is

depicted nicely in the form of a tabular fashion in the reservation table.

Now, in the reservation table; the X axis shows the time steps and Y axis shows the

stages. The number of columns will give you the total number of stages; that means, the

evaluation time. Let us take an example of a fourth stage linear pipeline; suppose I have

a four stage pipeline at this pink boxes are the latches; the reservation table can be shown

like this; these are the stages.

So, in time step 1; you are using X; S 1; time step 2 you are using S 2; time step 3; S 3,

time step 4; S 4. So, it will be a diagonal matrix kind of a thing; X will go like this. For a

linear pipeline, the reservation table will always look like this.

(Refer Slide Time: 19:22)

But for a non-linear pipeline reservation table can be more complex because as we have

seen for a non-linear pipeline, there can be feed forward like S 1 to S 3 or feedback S 3

to S 2, S 3 to S 1 such connections.

Let us say suppose; I am computing two functions X and Y. Now in the function X; my

pipeline utilization can be like this; first the data comes it goes to S 1, then S 2, then S 3.

From S 3; it again goes to S 2; you see from S 3 to S 2; there is a path, from S 2 again to

S 3, S 3 to S 1, S 3 to S 1 there is a path and S 1 to S 3, S 1 to S 3 also there is a path. S 3

to S 1 and finally, it finishes from S 1 there is a path for the data to go out.

And similarly for the other computation Y; say from S 1 to S 3; S 2; S 3, S 1; S 3 then

goes out. You see from S 3 also there is a path to go out; so S computation the results are

generated here Y generated here. But here; means it is not very important for you to

understand all this things because the examples we shall be taking the reservation tables

for the linear pipeline. So, we shall only be considering linear pipelines.

So, in a reservation table multiple cross marks in a row means repeated use of the same

stage in different cycles. Like here; S 1 will be used in time step 1 also in time step 5

contiguous X’s in a row; suppose there are 2 X’s side by side; which means a stage will

be used for more than one cycle; multiple X’s in a column it is not shown in the example;

which means more than two stages may be active at the same time step.

(Refer Slide Time: 21:28)

Let us look into some simple calculation; so, for a pipeline what we have said very

loosely is that; if there are k number of stages, we expect our speed up to be

approximately k. Let us see how it comes; so, some notations let tau denote the clock

period of the pipeline; t i is the time delay for stage S i.

(Refer Slide Time: 22:02)

Let us say we consider a pipeline like this; we have stage S 1, S 2, S 3 and so on and

there will be latches in between the stages. So, I am assuming that the time to compute S

1 is T 1; this is T 2, this is T 3, this is T 4 and so on. So, T i is the time delay of stages i

and let us say d L is the delay of a latch. So, what will be the total delay of a stage? T 1

plus the delay of a latch, so the delay of this will be T 1 plus d L delay of this will be T; 2

plus d L and so on.

Now, you see we are having a common clock; so, we will have to look at which stage is

the slowest. We find out the maximum of T i; call it tau m and tau m plus the latch delay;

that will be the clock period of the pipeline clock period cannot be less than this and the

pipeline frequency has to be reciprocal of that like. Let us take an example; suppose I

have a pipeline with four stages, where the stage delays or let us say 10 nanosecond, 12

nanoseconds, 8 nanoseconds and 14 nanoseconds and the latch delays let us say 1

nanosecond.

So, what will be the maximum clock frequency? Here my tau will be max of the delays

which is 14; plus the latch delay 15. So, my clock frequency can be 1 by 15; so, many

gigahertz because these are in nanoseconds; so, let us move on.

(Refer Slide Time: 24:26)

So, what will be the total time that will be required to process N data sets? You see there

are k number of stages in the pipe; so, k minus 1 time steps will be required for the pipe

to fill up and after the pipe has filled up; there will be a one output generated every

clock. So, k minus 1 for the pipe to fill up; after that one output every clock, there are N

data sets; so, for all the results I need N clock cycles after that.

So, you see k minus 1 plus N; whole into clock period; this will be the total time taken to

process; process N data. But, if we assume that we have an equivalent non pipelined

processor, where we did not use pipeline then the time taken would be T 1; N number of

say means N in into tau, N is the number of data and k in to tau we are assuming is the

time to process every data.

So, we are ignoring the latch overrides. So, approximately it will be N k tau; the speed

up will be the time taken on this processor divided by the time taken on the pipeline. So,

it will be like this tau cancels out like this and as I had said as N becomes large. So, you

can ignore this k as compared to N and this 1. So, it becomes N k divide by N

approximately k; so, speed up will be approximately equal to k.

(Refer Slide Time: 26:21)

And pipe line efficiency is defined as S k divided by k; you see k is the maximum

possible speed up and S k is the actual speed up. So, you see your actual thing is k minus

1 plus N into tau and this is N. So, if you just divide this up; this is defined as the

pipeline efficiency.

Pipeline efficiency equal to 1 means; you are having an ideal value of k and pipeline

throughput says that how many operations are completed per unit time; you are

processing N number of data items, you are taking a time T k. So, N divided by T k will

be number of operations per unit time; N divided by tk. So, these are some simple

calculations and this actually shows you the speedup curve; let us say tasks N.

(Refer Slide Time: 27:33)

So, as you plot speedup versus N for different values of k; you will see that your curve

looks like this. For k equal to 4; your speedup increases, but it levels to 4. So, as N

increases; it goes approximately to 4; for k equal to 8, it approaches 8; for k equal to 12;

it approaches 12. So, this case the maximum speed up that can be attained in a pipeline.

(Refer Slide Time: 28:09)

So, there are some other issues like clock, skew and jitter. You see clock frequency does

not only depend on the logic delay and the time you need to set and reset the latch. There

are other times called skew, jitter and the setup time.

Skew means the clock signal might get delayed on its way to the different flip flops and

latches. Suppose you generate the clock here, you will have to deliver the clock to

different points; the length of the parts can be different. So, there will be different delays

that the clock signal will experience before it reaches the different flip flops or latches.

This is what is called skew; maximum delay difference between the arrival of the clocks.

Jitter is well on the same latch; sometimes there will be a variation in delay. Jitter arises

due to environmental disturbances like noise in the power supply and so on. Logic delay;

we have already seen the delay in the slowest stage in the pipeline the tau. And setup

time, we have mentioned this earlier; setup time is the minimum time that you should

make a signal stable at the input of the latch so that the latch can accept it. So, not only

the latch delay; you will have to add the latch setup time also to it, these are some small

delays that get added.

So, with this we come to the end of this lecture; where we just gave you an overview of

what is pipeline? How it works? What are the basic principles behind it? So, now, that

we have seen what a pipeline is and how it works; in the next couple of lectures we shall

give you some very simple examples of pipelines and illustrate how we can actually

quote these designs in verilog? How we can implement these designs in verilog and

through simulation we shall see that actually it is working in a pipeline.

Thank you.

