
Hardware Modeling Using Verilog
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 28
Synthesizable Verilog

So, in the lectures so far we have seen various ways to model both combinational and

sequential circuits. So, if you recall we talked about and also learnt how to model. So,

called behavioral specifications of some digital system block and also we learnt how to

model some designs in a structured way structured design. So, broadly speaking designs

can be categorized into behavioral and structural and one thing.

So far whatever results that we discussed we showed they were based on simulation only,

but in reality whenever you are trying to design a hardware block I mean either on a p j

or on a 6 then you will have to use some kind of synthesis tool. Simulation can only be a

first step to carry out initial verification of a design, but when you are doing synthesis

you may see that a lot means other problems are cropping up there are some some errors

which I showing which were not reflected during the simulation phase.

So, in this lecture we shall be talking about some of the features of the verilog languages

that are meant to be used for synthesis, the other features which we have discussed in the

class, but they are often not accepted by a synthesis tool if you use those constructs the

synthesis tool will not be able to generate the final hardware circuit or the net list ok.

(Refer Slide Time: 02:18)

So, the title of today’s talk is synthesizable verilog. So, whatever I had just talked about

just now. So, the verilog language provides you with the number of facilities and features

and this features are mostly supported by the simulation tool for example, the simulation

tool that that we have been using a part of this course the I verilog and of course, the

waveform viewer g t k wave they are all known to support most of the verilog constructs

that we have been discussing throughout the class right. But as I had said there are some

language constructs which are not accepted by the synthesis tools this subset of the

language verilog which are actually accepted by the synthesis tools are referred to as

synthesizable verilog subset.

Now, in this lecture we shall be looking at some of the language features which are not

supported and some of the recommended styles of modeling for synthesis of circuits both

combinational and sequential.

(Refer Slide Time: 03:36)

So, talking about the synthesis rules for combinational logic you recall what do mean by

a combinational logic, a combinational logic is a hardware circuit which does not have

any kind of enough fan outs or storage devices built into it.

So, the output of the circuit will only depend on the currently applied inputs well of

course, the circuit the gates will have some delays they output will be available just after

the circuit delays, there is no notion of clock and other kind of synchronization that

coming in case of combinational circuits

So, you can say that the output of a combinational circuit at some point in time let us say

t should depend only upon the inputs that I have applied at that time of course, there will

be a delay of the circuit that we are not mentioning here well. So, we were trying to

model combinational logic there are some rules that need to be followed, first thing is

that since you are talking about combinational logic do not use I means any kind of

technology dependent modeling means specifically some details about timings see the

timing detail using that hash command.

So, whatever you give during simulation that is just meant for carrying out the simulation

and interpreting the waveforms that you are viewing after the process of simulation is

over, but when you are synthesizing you are finale delays will be dependent on the actual

hardware. So, where your mapping it can be a esic or a p j. So, you do not have any

control about the delay you cannot set the delays one or 2 or 3 nanosecond or picosecond

you cannot say that that will be entirely depend on the hardware where you are finally,

going to map your design tool ok.

So, this kind of technology dependent modeling are not allowed when you are trying to

synthesize combinational circuits. Secondly, of course, in a combinational circuit there

are no feedback. So, your net list or your circuit must not have any feedback, feedback

means some connection from the output of a circuit to the input of a circuit.

(Refer Slide Time: 06:20)

Let us take an example suppose I have a circuit like this, there are other inputs suppose

what I say is that this output line is connected to one of the inputs this is what you mean

by feedback. Well feedback is not allowed in a combinational circuit for obvious reasons

because when your feedback your circuit may turn in to a sequential circuit right.

So, in this example let us say I mean we have applied a one here we have applied a 0

here and a 1 and 1 here. So, now, what will happen what will be the behavior of the

circuit? Let suppose that initially the output of this of this nand gate is 0. So, 0 is being

feedback this is 0 0 and 1 nand will be 1, 1 and 0 nor will be 0, 0 1 and 1 nand gate. So,

the output will be changing to 1 right.

Now, when the output is changing to 1 this 1 will again be feedback, now the new input

will be 1, 1 and 1 will be now 0, 0 and 0 will be now 1, 1 1 1 will be again 0. So, there

will be something called oscillation in the output it will continuously go from 0 1 again

to 0 again to one again to 0. So, the output will never stabilize

So, if your object is to design a combinational circuit you must avoid feedback

connections like this, there must not be any kind of feedback in your net list or circuit

right and the third point I mentioned repeatedly earlier that whenever you are having a

some kind of multi way branching. So, either using if else or using a case construct while

we are checking for some condition and then you are deciding on something some

assignments.

So, here the output of the function whatever you are assigning to must be specified for all

possible input cases like for instance if you are checking for, for a condition which is a 2

bit variable then you must specify what the output will be for all 4 combinations of those

2 bit variables for 0 0, 0 1, 1 0 and also 1 1.

So, we discussed earlier that if you forget to specify one of the input combinations then

the synthesis tool will be generating a latch for the output. So, even if you are trying to

generate a sequential circuit. So, whatever will get generated will be sorry means

actually you are trying to generate a combinational circuit, but whatever will be

generated that will be a sequential circuit with a storage element. So, you must avoid this

kind of incomplete specification in multi wave branching.

(Refer Slide Time: 09:56)

So, I means as I said if you do not follow these rules the circuit may become sequential.

Here are some styles that you need to follow for the synthesis of combinational logic,

some of this we have already seen some of this we have not talked about earlier we shall

just look at them through some examples like the possible styles maybe. Firstly, we have

seen several examples. So, you can instantiate the basic primitives of gates and or nand x

or and so on and you can create an net list like that suddenly you can use user defined

primitive for combinational circuit you can define a truth table, right. Most of the

synthesis tool support combinational u d ps, but you need to check there. There are some

synthesis tools which will not accept any kind of u d ps at all even if it is a combinational

u d p with a truth table ok

So, that is mentioned not all synthesis tools will support this feature then continuous

assignment using assign statements this of course, you can use for modeling

combinational logic and functions at something which I have not talked about earlier.

These functions are something where I means you can use this continuous assignment

statements in conjunction with the functions we will see, we will see that there some

advantages or the code becomes much easier and more structured.

Then of course, we can use the always block for modeling combinational circuit we have

seen many examples here behavioral statements and just like functions there is another

thing called tasks. So, we can use tasks as well, but we cannot specify any kind of delays

and you can use a net list of the modules created using one or more of these you can

combine means any number of them you can create a some kind of interconnection of

them by using instantiation.

(Refer Slide Time: 12:15)

Let us look at these examples some of this one by one. So, as a gate net list so we have

seen many examples earlier this is a very simple example there are 5 parameters these 4

are the inputs and y is the output and this y 1, y this w 1, w 2 w 3 are some intermediate

wires. So, here you are specifying that there are 4 gates or x 1, x 2 is input w 1 is the

output this is second or xor and nand. So, in this way you can create any kind of net list.

Now, the point to note is that here we are directly specifying the gate types, but this

synthesis tool when it is synthesizing it will be generating the final hardware right. So,

the final hardware will be generated based on some target library, let say for example, the

target library does not contain any exclusive or gate. So, the x or gate which you have

specified here they will have to be generated using different kinds of gates maybe a

combinational nand gates or and or not gates and so on. So, during the synthesis process

whatever gates you have specified there can be some changes as well because you will

have to use gates only from the target technology library that is called; that means, the

target gates which are supported by the hardware. So, during the process the synthesis

tool also carries out some kind of optimization ok.

So, these are done here. So, when you are carrying out this mapping some of the gate

level minimization algorithms can be used.

(Refer Slide Time: 14:16)

Next continuous assignment is something which also we have seen through many

examples, here we can use an assign statement to assign some Boolean expression to a

variable which is of type where. Now, this is a very simple example a module which

computes the carry output of a full adder so it is a b or b c or c a right.

So, here also we have not specified any gates here we are specifying just the function.

So, the so the synthesis tool again will take the functional specification as the input and

will be trying to generate some gates or cells from the target technology library after

some kind of minimization or a optimization, this is what will be done if we use the

assignment statement.

(Refer Slide Time: 15:16)

Similarly, you can model combinational circuits using procedural block assignment

where the event is not an h regard event, this is an example of a simple example of a 2

line to 1 line multiplexer where in 0 and in 1 are the inputs sel is the select line and f is

the output. So, these 3 are the inputs and f is the output which is also reg because you are

assigning f within a procedure block.

So, here we are saying always whenever any of the inputs are changing if the select line

is 1 then in one is selected to f otherwise in 0 is selected to f . So, the point to notice that

when you are specifying a combinational logic like this your activity list must contain all

the inputs in this case the inputs are in 0, in 2 and sel. So, all the inputs of the behavior

which are used in this procedural block must be included in the event control because if

you do not do it this synthesis tool will assume that well those are not the inputs, but still

you are using it. So, if the inputs are not specified you do not know you may have to use

a latch to store the output f. So, latch will often be inferred by the selection tool if you

give incomplete input list specification. So, make sure that you give a complete input list

specification in this always block ok.

(Refer Slide Time: 16:53)

Now, let us see how functions work we have not talked about functions earlier, see

function is very similar to a function in high level language like c, c which means in a

language like c you can have functions. Now, now in a function you can pass a number

of variables through the parameters, but you can pass a single result through the name of

the function. So, here also whenever you are using a function it is intended to have a

single output a single bit output. So, it cannot have more than 1 outputs this is a

restriction of function in verilog.

So, let us say here we are trying to write a module for a full adder just using assign

statement, but instead of directly writing down the expression we are calling 2 function

sum and carry, these 2 functions we have written separately. Function the syntax is like

this function followed by the name sum is the name, then I will have to specify a list of

the inputs and they have to be provided in the same order you are mentioning them here

a b and carry in. So, a will be map to x, b will be map y and c in will be map to z and

then here you are giving an assignment statement for the left hand side is a name of the

function and right hand side is any expression based on the this input variables this is the

sum function similarly this is the carry function.

So, you can directly call this functions in the main full adder module what is the

advantage is that your module becomes easily understandable, it is it is much more well

documented. So, instead of writing the expressions here this module will become more

clumsy rather than if you write like this it will be much clearer. So, as I had said so

function in verilog will return a single value here sum, here carry and the value will be

return against this expression whenever you are writing an expression on the right hand

side. So, whatever is the calculated value of sum that will be assigned to s, similarly for

the carry function the value will be assign to c out. So, this makes the code more

readable as I said and these are typically used with assigned as this example illustrates

and also I have shown that the input arguments must appear in the same order in the

function and the place where you are calling them.

(Refer Slide Time: 19:46)

Now, let us come to tasks well a task is more general before going on the example let us

see what a task, is the first thing about task is that using task, task is like a function, but

you can pass more than one output value to the calling program or the module like you

see, an example and you see for function you can use it only inside assign as I had said,

but a task can be used anywhere task can be used anywhere inside a verilog function you

write a task and you can call it from someplace.

So, wherever you have defined the task that will get substituted in the place where your

calling with proper argument passing, let us take this example. So, this is again a full

adder example. So, what you are saying we are using the behavioral modeling seen

always at a or b or c in whenever the input change well instead of writing the sum and

carry expressions we are calling a task.

Now, f a is a task we have defined f a within bracket the list of parameters, s carry out a b

c in. So, in this list of parameters 3 of them are inputs and 2 of them are outputs so s and

c out will be returned. Now the way task is defined is like this task name and end task

and inside this we will have to specify the outputs and the inputs in the same order as

they appear here, let s and a out are the 2 outputs you specify them maybe the names will

be different here we call it them sum and carry then a b c in they are the inputs. So, here

you call them a b c, now in task you see you can also specify a delay which you cannot

in a function. So, some expression, carry expression. So, this is how we can use a task in

a function..

Now, in our earlier examples which we have seen we have not given any example that

uses function or task, but if you want for a larger designs you can use functions and tasks

as well fine. Now let us look at the difference between function and a task so, what are

the main difference and where you can use a function and where you can use a task right.

(Refer Slide Time: 22:33)

So, let us see this table s o, a function first thing is that. So, a function can call another

function, but a function cannot call a task. So, you can have multiple functions and you

can have nested calls a function x can call a function y y can call a function z just like in

a high level language we do this is how function calls are made, but tasks are more

general. So, a task can either call a function or it can call some other task.

Now, in a function the concept of delay is not there. So, it is assume that a function will

execute in time 0.

Student: (Refer Time: 23:21).

But, in the task in the example that I have shown it also shows there that you can also

include some delays. So, it can execute in non 0 simulation time and a function just

usually contains only combinational assignments nothing else, but in a task it can be

more general you can contain delay like the example showed, you can contain some

event triggering or some timing control statements as well the function returns a single

value this is another thing and a task it may return more than one value through output

arguments, like in the example that I have showed earlier there were 2 output arguments

sum and carry.

Now, another kind of port declaration is there which I have deliberately not talked about

I shall take some examples later these are some kind of bidirectional inputs in out, well

in out means you can use that variable as an input and also as an output, but when you

map it to the hardware sometimes some problems are created for in out type variables

that is why in the designs that I have shown I have avoided in out fine and another thing

is that a function must have at least 1 input argument, but there is no such restriction in

task it can have 0 or more arguments and the arguments can be of type either input or

output or in out.

(Refer Slide Time: 25:01)

Now, these are some of the constructs which you must avoid when your objective is to

carry out combinational circuit synthesis like we should not give this edge dependent

even control like you must not give means always at posedge clock or neg edge clock no

kind of posedge or neg edge kind of event control should be there in a combinational

circuit description.

Then second thing I already mentioned there must not be any feedback loops. So, when

you specify net list using instantiations make sure that you do not include any feedback

loops, third thing is that you can have procedural assignment or continuous assignment,

but there must not be any delay specification or event control, because in synthesis those

are not considered.

Similarly, you can have a loop with timing there can be some delay specified. So, the

delays are not allowed then data dependent loops, data dependent loop means some kind

of a loop where the number of times you are going to loop it depends on a variable that

kind of thing is not allowed. The number of times you are looping must be a constant.

So, if it is a constant suppose 3 I specify I want to execute a for loop 3 times then the

synthesis tool will make 3 copies of whatever is the body of the loop it will make 3

copies of the circuit and it will create a combinational circuit like that there will be 3

levels which corresponds to the 3 iterations of the loop right.

Sequential user defend primitives like state table or not permitted by synthesis tools and

there are some other miscellaneous constructs which I have not discussed deliberately

like fork join. These are used to specify concurrency wait well wait is used sometimes to

make a statement wait for certain time before it gets activated and of course, disable you

can disable some signals are commands.

(Refer Slide Time: 27:27)

So, to summaries this synthesizable verilog constructs the construct that you must use

when you objective is to synthesize the design in to some hardware, there as follows

module end module of course, well you are allowed to carry out instantiation you can use

always constructs assign statements built in gate primitives like and or not x or, nand, nor

this you can use, but for user different primitives you can possibly use only combination

specification, but still you will have to check with the synthesis tool your using that

whether the tool supports combination u d p or not. Parameters you can use functions

and tasks as I have mentioned as something that can be used for loop is usually

supported by all synthesis tools the other kind of loops may not be supported.

So, again we will have to specifically check whether the other kind of loops like while or

repeat they are supported or not. Regarding operators almost all the operators are

supported by adding a couple of them a very few blocking and non-blocking assignments

are supported and multi way branching using if else case, case x, case z. So, you can use

bits and with respect to vectors the part selection you can select some segments from a

vector those are supported ok.

So, if you stick to these rules that mean you will not be using anything outside this then it

is often guaranteed that whatever module that you write that can be synthesized into a

hardware by the synthesis tool.

(Refer Slide Time: 29:22)

And there are a few things which are not synthesizable definitely like initial construct it

is meant only to be used in the test benches delay specification is in the hatch command.

So, you cannot use delays in synthesizable code, time no concept of time in

synthesizable code, real data type is often not supported, only bits and integers they are

supported and the operators this triple equal and not equal to equal to these 2 are not

supported fork join force release and as I had said in loop control you cannot loop

variable number of time. So, variables in loop control are typically not supported.

So, with this we come to the end of this lecture. So, in this lecture we try to give you just

an idea that what are the constructs in verilog that you have learned. So, far which are

useful for synthesis and what are the constructs which are best avoided because most of

the synthesis tools do not support that.

Now, in the next lecture we shall be continuing with our discussion, we shall be talking

about some recommended practices some dos and do nots you see verilog maybe

supporting a few things. So, the synthesis tool may be supporting many things, but if you

go to an industry who is specialized or whose specializes in design they will give you

some guidelines the designer will have to stick to those guidelines whenever they are

designing any circuit using some language like verilog, because if they do that then the

codes will be well documented they can be reused and they can be maintainable.

Thank you.

