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Lecture - 23
Modeling Finite State Machines

So, we have so far looked at the design of both combinational and sequential circuits

using Verilog. The combinational circuits that were looked at, were modeled using the

continuous  data  flow  kind  assign  statements,  or  even  using  the  various  kinds  of

procedural blocks, typically using blocking assignment statements. And the examples of

sequential  circuits  that  we saw, were all  modeled  using procedural  assignments  both

using blocking and non blocking assignments.

Now in this lecture, here we shall be looking again at the modeling of sequential circuits,

but not directly from the behaviour as we had seen earlier, but in a more formal way

from  the  so  called  state  table  or  the  state  transition  diagram  representation  of  the

sequential circuit.

So, the topic of our discussion today is modeling of finite state machines ok.
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So,  as  I  said  that  you  can  have  two  different  kinds  of  circuits;  combinational  and

sequential. So, in a combinational circuit, the idea is that, the output or the outputs will



depend only on the applied input at that point in time. It will not depend on the previous

or the past history.

So, as an example you can think about a full adder, where whatever inputs a b c were

applying  right  at  this  point  in  time,  the  output  sum and  the  output  carry  would  be

generated based on those only. So, it will not depend on the previous history means, what

are  the  a  b  c  values,  that  we  had  applied  in  the  past,  this  is  what  is  made  by  a

combinational circuit, the output depends only on the applied inputs. So, in contrast for a

sequential circuit the outputs that are generated, will depend of course, on the applied

inputs, but also on some of the past history which is represented by the internal state. So,

we shall  be looking at a number of examples in this regard,  to indicate  what a state

means, like I can give a very simple example, you think of a binary counter say a 4 bit

binary counter that counts from 0 1 2 3 4 up to 15 then again back to 0.

Now, suppose when the value of the count is 5 let us say, and we apply a clock. So, the

output that we expect is 6, that depends not only on the clock you are applying, but also

on the previous count value that 5, that previous count value that can be regarded as the

state of the machine. So, the next output that you get, will depend on some previous

information; that is the state and on the applied input. So, just as in the example of the

counter its stated, the internal states change with time.

And for any practical hardware implementation of such a sequential circuits, the number

of states has to be finite. It cannot be infinite clearly, because the states ultimately you

will be representing or storing in flip-flops. Suppose it is a 4 bit counter, will be storing

the 4 bit of information in 4 flip-flops. So, if I say there are infinite number of states,

then it is not practical to build such a machine, because you will be requiring an infinite

number of flip-flops fine. So, because of that the practical sequential circuits are also

referred to as a finite state machine.

So, there is a concept of a state, number of state is finite and there is a formal definition

of a machine that will see, and most of the practical circuits that we see is around us are

sequential in nature, very fewer combinational.
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Now talking about a finite state machine; so a finite state machine or FSM in short, can

be specified or represented in the form of a state table or in the form of a state transition

diagram. Now in the examples that  we shall  be showing we shall  be using the state

transition diagram rotation, but you recall earlier when we talked about the user defined

primitives or u d ps, there the sequential functions we represented in the form her table

that was an example of a state table. We showed how to create the state table of a d flip-

flop, d latch, j k flip-flop, then s r flip-flop and so on.

So, those are examples of state table that same information we can also represent in a

diagrammatic  form that  is  easier  to  visualize  sometimes.  We shall  be  showing  such

diagrammatic representations here; that is called state transition diagram. And of course,

there are some variations which many people prefer to use. Say means one such structure

that is used is called algorithmic state machine or ASM. So, I mean well just take some

examples  of  ASM later  during  the  course.  So,  when  we  talk  about  designing  more

complex systems.

So, some examples of FSM, let us say we have a circuit that detects 3 or more ones in a

serial bit stream. Means I am assuming that there is one input where a sequence of bits

are coming one by one; 1 0 0 1 1 1 0. They are coming continuously in synchronism with

the clock let us say. So, here I want to find out whether there are 3 consecutive ones in

the bit stream or not. So, every time 3 consecutive ones are detected, the output again a



single bit output should go to one otherwise the output should remain at 0. So, the output

will become 1 whenever it detects 3, at least 3 or more consecutive ones in the stream.

This is what our example here is. So, this is the.
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State transition diagram, this is how it depicted of this example the circuit to detect 3 or

more ones. This is the state table description; this is the equivalent state diagram. Let us

explain first this state diagram it is easier to understand, then we shall see the state table.

Here  the  circles  they  indicate  states  of  the  machine.  Now how many  states  will  be

required for a particular description it will depend on the problem specification. For this

case, because we are trying to detect 3 consecutive ones, we need at least 4 states. What

does the 4 states will signify. This a will indicate the initial state, b will mean that we

have seen one, a single one. So, far c will mean we have seen two consecutive ones, and

d will mean we have seen 3 consecutive ones.

So, for this case we need at least 4 states. So, let us see the notation used are; this 0 slash

0 mean the first one refers to the input, after slash it is the output. So, the circuit has a

single input and a single output. So, suppose I am in the initial state. So, when you reset

the circuit it starts with state a now if I get a 0. So, it is not a one. So, I remain in state 0.

So, I am waiting for the next one. So, whenever I get a 1 I go to state b 1 slash 0. So, still

I have not got 3 ones, a single one, I go to state b. b remembers the information that I

have seen a single one. So, so in b if I get another one I go to c. So, again the output is 0,



c remembers that I have seen two ones, and in c if I get another one I go to d with the

output being made to one, because 3 ones have been detected, and while in d if I receive

more number of ones I remain in state d and the output is also made one, but while in b if

the next bit is 0 I have to go back to a, because again I will have to start with the next

one. Similarly in c if I get a 0 I have to go back to state a, and similarly from d if I get a 0

I have to go back to state a this 0 0 does not mean anything. So, this is the state transition

diagram.

Now this same information can be depicted in the form of a state table. So, what does the

state table indicate. It indicates the inputs. So, here my inputs are; reset and this, this

input value first bit. I am calling it as input and I have a single output. Now in addition to

it there is the notion of the state. I call it present state as p s next state as n s. So, the idea

is that if my reset is high, irrespective of the present state and the input applied my next

state will be a. So, reset it goes to a and the output will be 0. So, if the reset is 0, then my

operation starts, if my present state is a and the input is 0, then I go to next state a with an

output 0. This is indicated by this arc.

If my present state is one input a and input is one, then my next state is b with the output

0 it is this edge input is 1 output is 0 next state is b. So, in this way for every edge in the

state transition diagram, I can have one row in this state table. So, these are equivalent

representations, but the diagram is more easily, means understandable visually, because

this table is a little more complicated to interpret fine.
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Now, let us look at slightly more formal definitions of FSMs. There are two kinds of

finest state machines that we distinguish; one is called a Mealy machine other is called a

Moore  machine.  Let  us  see  what  these  are.  Now  any  finite  state  machine,  well

deterministic finite state machine means whenever we apply an input. Whenever I know

what is the state.

So, the next state and my output is absolutely deterministic. So, all practical circuits are

deterministic, but for modeling, theoretically there is another kind of FSM which is also

defined which is called non deterministic, but from the practical design point of view, we

are only considering deterministic of essence. So, mathematically it can be represented

sigma gamma s S 0 delta and omega where sigma denotes the set of input combinations.

Suppose the circuit has two inputs; a and b, there will be 4 input combinations 0 0 0 1 1 0

and 1 1, sigma indicates the set of all the inputs. Similarly gamma indicates the set of all

outputs. So, if there are 3 outputs, the set of all outputs can be 8 0 0 0 0 0 1 up to 1 1 1,

set of all outputs is denoted by gamma.

S denotes the set of states, and small s 0 which is a member of S, is the initial state. So,

we start with s 0. Delta is defined as the state transition function and omega is the output

function. So, how are they defined? Delta is defined as follows, delta colon mean this is

the definition it means s cross sigma means this is a Cartesian product. So, some state,



given a state, given a input it will determine the next state. So, given some value from

capital s given some input from capital sigma, it will determine some state in capital s. 

So, this will actually tell what the next state will be, present state and present input will

determine the next state. And for the output function, here we distinguish between Mealy

and Moore machines. For a Mealy machine the output sigma will be determined by this

state as well as the present input. So, the output depends on state plus the inputs, but for a

Moore machine, the output does not depend on the inputs, it depends only on the present

state, output depends only on the state.

So, in this way you can distinguish between Mealy and Moore machines. We shall see

some examples.
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Pictorially  the Mealy and Moore machines  can be shown like this. You see for both

Mealy and Moore machines, there are two functions; one is the next state logic other is

the output logic. The next state logic is actually the delta function, it takes a primary

input, it takes my present state which has stored in flip-flops, and it generates my next

state this is a combinational circuit n s logic, and the output logic is again similar it takes

for Mealy machine it takes a primary input, and the present state it generates the primary

output. So, for a Mealy machine the output is dependent on the primary inputs as well as

the state, but for a Moore machine the output is dependent only on this state not on the

inputs, this is the difference.
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Fine let  us take an example,  this is an example of a Moore machine.  So, means our

example is very simple. let us assume that there are 3 lamps red green and yellow. So,

there is a circuit, there are 3 output lines the 3 lamps are connected to the 3 output lines,

and there is a clock signal which is coming. There are no separate inputs there is only a

clock, and these 3 lamps are supposed to glow cyclically with a fixed time interval, let us

say 1 second interval.

Now clearly here the finite state machine will be having 3 states, because you have to

remember that which red which lamp had blown in the last state, because it was red, if it

was red then next time the clock comes it should be green, if it is green next time clock

comes, it should be yellow and from yellow it should be red. So, this can be captured by

a state transition diagram like this red to green, green to yellow, yellow to red.

So, this is very simple there are no separate inputs, a very simple finite state machine.

This is a Moore machine, because the output depends only on which state it is in, it does

not depend on inputs, because there are no inputs in this example, the input set is null

fine.
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So, let us see how we can code this example in verilog red green yellow. so the first thing

is that let us make some assumptions. Let us say I define 3 states s 0
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 S 1 and s 2; so I define is 0 as red S 1 as green and S 2 as yellow. So, talking about the

finite state machine, you can have it like this; say this is s 0, this is s one, this is s 2. So,

when you are in s 0, if there is a clock there are no inputs. So, you can write a dash, your

this S 1 should glow, S 1 means green red green yellow or means if you put it in that



order red first green then yellow. So, if it is green. So, there should be red green yellow 0

1 0 should be the output

And when in S 1 if a clock comes, again there are no inputs S 2 means yellow, red green

yellow. And in S 2 if a clock comes you go to S 1 it is red. So, first one will be 0. So, this

will be my state transition diagram, there are no inputs, but there are 3 outputs and there

are  3  states.  Now the  point  to  know is  note  that  is  that,  here  we are  talking  about

hardware implementation. So, there are 3 states. So, we need two bits to represent the

states. let us say S 0 we can indicate by this state 0 0, this S 1 we can indicate by a state 0

1, and S 2 by 1 0. Where is 1 1 is an invalid state, 1 1 will be an invalid state fine. So, let

us see how in verilog we can code this state transition diagram.

So, we have declared a module, where there is only clock as the input, clock and light is

the output, light is a vector, there are 3 lights red green and yellow, clock is an input, and

we are declaring this state as a 2 bit variable 0 1 2 bits, and for convenience for ease of

understanding, we are declaring a parameter constants S 0 we are calling it as 0 S 1 as 1

S 2 S 2. You see in binary 0 0 means 0 0 1 means 1 1 0 means 2. So, S 0 S 1 S 2 we are

denoting by the decimal number 0 1 2. Similarly the 3 colors of the lamps were again

defining as a parameter for convenience; red we are declaring as a 3 bit number 1 0 0,

green as a 3 bit number 0 1 0, yellow as a 3 bit number 0 0 1, this will indicate which

lamp we are glowing; first one is red, second one is green, last one is yellow.

Now,  our  description  is  very  simple  here  we  are  executing  this  procedural  block

triggered by the positive edge of the clock. So, whenever there is a positive edge of the

clock, we are seeing in which state we are. Suppose we are in state S 0 well and a clock

has come. So, my next state will green. So, my state will be changing to S 1. This S 1

will be indicating the green state you recall, S 0 is red, S 1 is green, S 2 is yellow, and my

current output will become green.

Now if I am state S 1 which means green and if a clock comes my next will be yellow.

So, state will go to S 2 and my light will be yellow and if it is in S 2 in yellow state will

again go back to s 0, and it  will  glow the red light.  Now when the circuit  starts  up

suppose the states the flip-flops sorry they start with the 1 1 state something else. So, you

will have to also give a default state. So, you are not initializing the state. So, if it is



something else other than S 0 S 1 or z 2, these are the 3 values then you start with red as

the initial state, state S 0 radius assigned to light.

Now, you see here we have used only non blocking assignment statements. So, if this is

given to a synthesis tool, the synthesis tool will be generating a circuit, where for this

state it will generate two flip-flops, because it has to remember it, and because of the non

blocking assignments we have used for light also, it will be using 3 flip-flops, and for

every positive edge of the clock this assignments will take place right.
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So, I have also shown a sample test bench for this, for this circuit to show how we can

write a test bench. You see here we have defined this clock as reg, and the output of this

circuit light as wire 3 bit. We have instantiated it called it lamp. In this initial block we

have started by initializing clock with 0 at time t equal to 0, and in this always block after

delay of 5 we are writing clock equal to not clock which means I am generating a clock

signal with a time period of 10 units. It starts with 0 after 5 it goes to one, after 5 it goes

to 0 again and so on, it repeats.

Well and here I am just applying clocks, and here I am saying, I initialize clock to 0 then

this always block will take over and at type hundred I finish, because here I have no

separate inputs to apply in this example, the clock is the only input. So, whenever a clock

comes the lamp will change from one to the next. And in the just initial thing there is

another  block  where  I  have  specified  a  dumb file,  where  to  dump the  values  value



change dump and 0 test cyclic lamp means, that here all the variables I want to dump,

and also I have given a monitor where I am asking that you display the time and r g y

equal to b the value of light.

So, if you just run the simulation we get an output like this. So, you see that that initially

at time t equal to 0, this r g y are not initialized, because clock has not yet come. So, the

values are x x x say at  time 5 first positive edge of the clock comes.  So, so it  gets

initialized to red, because it is the default case, initially it was x x x. So, default it starts

with x and with a clock period of 10 15 25 35 45 like this goes and you see red then

green then yellow, again red green yellow in this way it continues, and it will continue

till 95, because at hundred you are finishing. So, it stops here right.
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So, as I had said that in this solution 5 flip-flops will be synthesized; two for the state

variables and 3 for the light. This is because we have used non blocking assignment

triggered by clock for both state and light, this as I said, but you see for this design do

you really need this. Do you really need to store the lamp output values in a flip-flop,

because if I know this state then I will know that which lamp to glow. So, if I know that I

am in state s 0, it means red should be activated, if I know I am in state S 1 I know green

is to be activated. So, I really do not require a flip-flop to store the value of the outputs,

storing the state is sufficient.



But because of the way I have specified the design the synthesis tool is generating flip-

flops also for the outputs. So, let  us see how we can overcome this. So, we make a

modification. So, we split they always block in to two always blocks. First thing is that

all assignments to light, will be made in a separate always blocks, where we use blocking

assignments and not by clock, because whenever you specify an always block triggered

by a clock the synthesizer will be made to believe that you are trying to do something in

synchronism with the clock.

And hence you have to synthesize them as flip-flops or registers, but if you are using a

blocking statement then the synthesizer will analyze, that well do you really need to store

the values or is it  a pure combinational circuit,  it  will try to decide; so the modified

verilog code.
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Will look like this. So, you see, here we have split the always block in to two. So, in the

first always block. The first part is the same no change. So, in the first always block, we

are triggering it by the positive edge of the clock, and what is happening here only the

state changes nothing else. We are doing a case on state. So, if it is in state S 0 my state

will become s one, if it is in state S 1 it will become S 2 if it is in s 2, it will become a 0

and default it will start with s 0. Now in another always block, here I am using you see

blocking assignment statements, and I am triggering it not by clock, but by state. So,

whenever state changes you do this. What you do? If this state is S 0 you blow red. If the



state is S 1 you go green, if it is S 2 then yellow and default, since we are starting with a

0 it will be red ok.

So, if you do this if you make a specification like this what the synthesizer will see.

Synthesizer  will  find  that.  Well,  I  see  that  I  have  specified  the  output  value  for  all

combinations of state for 0 0, it will be red 0 1, it will be green 1 0, it will be yellow and

for 1 1 it will be red. So, it can actually find out that what will be my output just from the

state. So, it will be a combinational circuit.
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So, just about this solution, this synthesis tool will be generating only the flip-flops for

the states, but the second always block where you are initializing the light, this 1. For this

no flip-flops or latches will be generated why because I can create a truth table where

depending on the states I can uniquely identify the values of the light. So, I know if it is 0

0 0 1 or 1 0 which light to glow, but if it is 1 1 it is an invalid state. So, the output will be

x x x. So, if you do a (Refer time: 28:21) map minimization of these 3 functions this is a

two variable function let us say S 1 and S 0 are the two state variables,.

Then this r g and y outputs can be obtained as r will be just S 0 bar S 1 bar, g will be just

S 0 and y will be just s 1. So, whenever S 1 is 1 then you glow yellow. So, whenever g,

this S 0 is 1 here, you glow yellow green and so on. Red will be both are 0 0, both are 0 0

red. You see this is a pure combinational circuit description, and synthesis tool will be



looking  at  this  it  will  find  out  that  well  this  is  actually  a  combinational  circuit

description, and it will be generating a combinational circuit.

So, with this we come to the end of this lecture. So, we had talked about finite state

machines,  distinguished  between  Moore  and  Mealy  machines,  and  worked  out  one

example, that how we can represent the FSM, and how we can code it in to Verilog, and

we looked at  two alternate  kinds  of  design;  one in  which  unnecessary flip-flops  are

synthesized,  and the other, and improved one,  where only the essential  flip-flops are

generated.

Thank you.


