
Hardware Modeling using Verilog
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 18
Blocking / Non-Blocking Assignments (Part 3)

So, we continue with our discussion on the Blocking and Non-Blocking Assignments.

So, in this lecture, we shall looking at some more differences in the way they behave and

the way they synthesis or the simulation tool will interpret or handle the description that

you have given or provided in either blocking or non-blocking kind of assignments. So,

we shall be illustrating these points through a number of examples that will be the best

way to just explain.

(Refer Slide Time: 00:56)

So, actually through the examples, we shall be showing you some modeling styles; some

modeling styles using both blocking assignment and also using non-blocking

assignments.

And there we will try to understand by looking at this semantics. So, the meaning of the

statements, how this simulator or the synthesis tool might be influenced to capture the

behavior of a model in a particular way; that whether it is actually capturing the behavior

in the way you are intending or it is doing something else. So, as these are something

which is extremely important from the point of view of the designer because you have to

understand this blocking and non-blocking statements very clearly because if you do not

model the behavior of a circuit or system that you want in the proper way.

Then even a very small error in the model which might easily be overlooked that might

result in a drastically different output or a drastically different circuit depending on

whether you are simulating or synthesizing. So, we shall be trying to see some examples.

Now there is another thing, I just mean, I mentioned repeatedly that when you are

studying some codes when you are learning some constructs of a language. So, it is

always recommended that you actually run the code say for Verilog, you simulate it and

see how the outputs are coming change the code and see; what are the changes that are

happening.

(Refer Slide Time: 02:50)

So, the first example that I take is a simple timed assignment using blocking and non-

blocking a very simple segment of code. So, inside a block begin end block this can be

inside either always or initial whatever some procedural block I write blocking

assignment after delay of 5 b c equal to after delay of 5 a and here similar, but non-

blocking. So, let us try to understand what will happen here blocking statements will be

executing one after the other, first statement will say that after a time delay of 5 b will be

assigned to a second statement says after this is finished, only then, it will come to the

second statement. So, after another time delay of 5 that value of a will be copied to c. So,

the value of b which was there it first goes to a and then it goes to c.

So, the value b will be finally, assigned to c after a delay of 10 time units, right, this will

happen here. Now if you use non-blocking assignment statement, what will this mean?

This will mean here the time delay does not mean that you first finish this after time 5,

then again after time 5 do this, no, it will mean that you evaluate the right hand sides see

a scheduled to get the value of b 5 time units into the future right hand sides are

evaluated together when you say hash 5 and hash 5. It does not mean like this at first this

5 and then this 5, this is a 10 not this, both of these are waiting for time 5 and they are

assigning they are executed concurrently right. So, here b will be assigned after time 5 to

a; a will be also assigned after time 5 to c.

So, you see in the first case here the value of b was assigned to c, but here finally, the

value of a will get assigned to c, right. So, the final value of c will be different for these 2

cases, this is a very simple example, but you will have to understand the difference very

clearly what this hash 5 here and what this hash 5 here means. So, when you are using a

blocking assignment, I am repeating if you are using those delays because in a blocking

assignment statement, this statements will be executed one after the other their delays

will get accumulated if you give 5, 5, 5, it will 5, 10, 15, 20 that way the delays will get

accumulated, but in a non-blocking case, it is not.

So, there the delay means you evaluate all the right hand sides together and after how

much time you will be assigning it to the left hand side, if you give all then hash 5 hash 5

hash 5 means after delay of 5 all of them will be assigned together it is not that the delay

will be adding up not like that. So, because of that for this 2 cases the final value of c

was coming to be different let us take another example.

(Refer Slide Time: 06:35)

This is procedural block with a clock always posedge clock, here I am using a blocking

assignment. So, what does this block mean this block means that whenever there is a

positive edge of the clock you activate or start executing this what is this saying that you

first assign a to q 1, then assign q 1 to q 2, right.

So, in terms of the hardware, if you give it to the synthesis tool; what synthesis tool it

will generate? You see a is assigned to q 1, just think a flip flop a will be assigned to q 1

you. So, whenever the positive edge of the clock comes, a will be assigned to q and it

will be stored in the d flip flop the first statement goes and after this is done this q 1 will

be assigned to q 2, because you see this is not that q 1 will be connected to this, because I

mean you will have to understand; what is the meaning of non-blocking the synthesis

tool and also the simulation tool they know what is the meaning of the blocking

assignments blocking assignments means these statements are supposed to be executed

one after the other after the first statement executes that value will be used to execute the

second statement one by one sequentially.

So, if you keep that sequential thing in mind then you see the first statement says q 1

equal to a, this is fine, it will be mapped to this flip flop q 1 will be a, but after this is

completed, only then, the second one will start. So, this q 1 already has received the

value of a. So, that a is supposed to go to q 2. So, the synthesis tool will understand that

meaning of this blocking assignment. So, instead of connecting q and it will connect a

directly to this second flip flop also to generate q. So, it will be 2 parallel flip flops after

the clock finally, both q 1 and q 2 will be getting the same value a; a will be stored here

as well as a will be stored here.

As this meaning shows, this a will go to q 1; q 1 will go to q 2, same a will come, right.

So, in terms of the hardware it with 2 parallel flip flops, let us look at a slightly different

you see this was my description I simply interchange the order.

(Refer Slide Time: 09:30)

I just write it like this and below I write an description same description using non-

blocking. Non-blocking assignment here let us try to understand; what will happen; here

we have written q 2 equal to q 1 and q 1 equal to a; what does this mean?

(Refer Slide Time: 09:57)

You see you can imagine, there were 2 flip flops, q 1 will be the output of 1 of the flip

flops, q tool with the output of the other flip flop, first one you are saying that q 1 will be

going to q 2 which means this q 1 has to be connected to the input of this q 1 will have to

go to q 2.

Secondary we saying some other vary because after this is completed only then you will

come here a will go to q one. So, some other value a; a will go to q one. So, the old value

of q 1 will go to q 2. This a will be going to q 1, you see what we are trying to say is

nothing, but a shift register if you write it in the other way around by interchanging the

order; what you are saying is just a 2 bit shift register q 1 will be shifting to q 2 and then

this a will be shifting into q 1, right. So, the same thing will happen for the non-blocking

case or so, non-blocking means the same thing q 1 will go to q 2 a will go to q 1 the

order is not important because in whatever we just order you mentioned.

So, the hardware that will be synthesized well be a 2 bit shift register q 1 will go to q 2 a

will go to q 1. So, here also a goes to q 1 a goes to q 1 q one goes to q 2 q 1 goes to q 2.

So, the previous values of a and q 1 previous value of a previous value of q 1, they will

be assigned to q 1 and q 2. This will be assigned to q 1 previous value of q 1 will be

assigned to q 2. So, both of these descriptions model a shift register; so, one thing you

understand for a blocking case it is very peculiar. So, if you write the 2 statements in a

particular order then it will generate 2 flip flops in parallel, but if you simply interchange

them it will become a shift register.

So, this you will be able to understand only if you know; what is the meaning of the

blocking assignments, if there are some statements what exactly is the meaning and how

they will execute and what will be the final result, right.

(Refer Slide Time: 12:28)

So, let us continue, let us take another example here there are 2 blocks to procedural

blocks both on positive edge here you are saying at the positive edge q 1 will go to q 2

also the positive edge a will go to q 1, just if you move back in the previous slide you see

here we used a single procedural block, but you are doing the same thing at the positive

edge a was going to q 1 q one is going to q 2.

But here we are meaning the same thing maybe we have using 2 different blocks, but

both are activating in positive edge and the assignment will take place in a very similar

way. So, here also you will be generating the same shift register, right. So, this is fairly

simple. So, if you just put them in this order then also you can generate a shift register,

but if you put them the same code instead of non-blocking; if you put blocking; what will

happen?

(Refer Slide Time: 13:27)

Let us understand; here there are 2 different always blocks. So, in the earlier case, we

said that the 2 statements are inside a single always block which means they were

executing one after the other.

But here I am saying; there are 2 different always blocks, they are executing concurrently

maybe there are blocking assignments, but q 1 equal to a and q equal to q 1; both will be

executing together whenever posedge of the clock comes. So, now, you see; what will

happen; well, q 1 will go to q 2 is fine, but a will be going to q 1 now in terms of the

hardware just see. So, what we are trying to say is this first it will says a will go to q 1;

that means, a will go to q 1 second statement says q 1 will go to q 2. So, some q 1 will go

to q 2 both at the positive edge, but the value of q 2 will be indeterminate.

Because what will be this q 1, here will it be the old value of q 1 or this new value of q 1

which you have just now loaded into q 1 from a, this description is a little ambiguous if

you use blocking statements here, this description is ambiguous and you should avoid

this because simulator may also confuse; this q 2 will be q 2 will become indeterminate

because it is simulator first execute this. So, whatever is the old value of q 1 it will be

assigned to q 2, then a will be assigned to q 1, but if its executed this first, then the new

value of a 1 will be assigned to q 1 and that q 1 will be assigned to q 2.

So, it will act as shift register. So, the interpretation of the meaning may not be unique

depending on the order of the execution that will be scheduled by this simulator the

synthesis tool will also give you a warning that there is a confusion and the output value

will be indeterminate. So, you should. So, the crux is that you should try to avoid clock

triggered assignment on blocking statement as far as possible whenever you want to

carry out assignment with clock triggering better to use non-blocking then all these

problems will not occur, fine, let us look at another example which is slightly more

complex.

(Refer Slide Time: 16:24)

And it will bigger; well here our objective was to design a 4 bit shift register, suppose

this was what we started to design.

(Refer Slide Time: 16:41)

So, we wanted to design a 4 bit shift register like this; there 4 flip flops; the output of one

flip flop will go to the input of the second flip flop. So, this is what we are trying to

model let us say and of course, there will be a clock; there will be a clock signal which

will be feeding in parallel to all the flip flops and of course, there will also be a clear

input clear will be active 0. So, whenever it is 0 it is activated. So, I am showing it as a

bubble; suppose, this is what I was trying to model and let us say we came up with a

Verilog code like this.

Let us see whether this Verilog code means actually models are shift register like this or

not, right, let us see here as I said our parameters are clock clear A and E. So, what is our

A and what is our E? This E is our input and A is our output you see A, the input and E is

the output fine E is the input and A is the output. So, actually what we want here is that

let us say we want to shift register when we wanted to call these as E, we wanted to call

this A and the intermediate point; let us call this as B, C and D. So, you can either do it

like this or you can do it in the previous way that will be easier I think let us keep it in

the previous way that will be easier. Let us call this E, let us call this A, then this will be

B, this will be C, this will be D.

So, it really does not matter. So, let us just referred back in the previous one; let us see.

So, here the intermediate points B, C, D; we are declaring as reg. Now in the block; what

we are doing? We are saying always that positive edge clock or negative edge clear. So,

whenever either there is a clock going high or a clear is becoming 0, you enter this block

if clear is 0, if not clear in this begin end block you clear B, C, D, E to 0s. So, there are 2

here there are flip flops B, C, D, E you initialize them to all 0s 0 0 0 0. So, whenever

clear is 1, clear is 0, not clear is 1.

Else clock has come you are trying to do something you are writing 4 things you are

writing E equal to D, you are writing D equal to C, you are writing C equal to B and you

are writing B equal to A. So, if you write like the; what is meaning D equal to E means

whatever is D; you are copying to E, D equal to C. So, whatever is C, you are copying to

D, C equal to B; whatever in B, you are copying to C whatever B; B you are A; you are

copying to B, right.

(Refer Slide Time: 20:48)

So, this is like the shift register thing. So, this is the shift register which will be trying to

model like this, right and this is the description equal to D means.

So, in this order, the statements will be executed, these are all these are all blocking

assignments; first D will be assigned to E. So, in a shift register; what happens suppose

the shift register my bits were 0, 1, 0, 1. Now if I apply a clock; what will happen? A

clock comes; this will be shifted, right. So, this 0 will come here; this one will come

here, this is 0 will come here, this one will come out and a new 0 will come in. So, you

see D equal to E, this is E, this is D, this is C, this is B; D equal to in whatever was D;

this goes to E, this is the first step, then C goes to D; whatever is C, it goes to D, then B

goes to C; whatever is B; it goes to C; then A is the input; A is the input from outside A

goes to B.

So, A goes to B. So, it is actually shift register, first, we are shifting this, then you are

shifting this, then you are shifting this, then you are shifting this; this is correct behavior

of a shift register. So, when you are actually trying to model a shift register, this order is

correct. So, I think here let us correct this. It is actually A should be input and this E

should be output. This is correct description. This A is input and E is output. This is

correct, fine. So, this is a correct way of modeling a shift register like this. Now suppose

we make a small change; just this 4-4 assignments which are there, we simply reverse

their order, we just write B equal to A first, C equal to B next, D equal to C next and E

equal to D last.

So, we just reverse the order of the procedural assignments. The remaining thing is

unchanged; just these 4 statements; we reversed; C means ultimately you may think that

well, we are actuated to a shift register. So, whether you specify that first and then this or

this first and then this should be the same, it should not matter, but suppose you do it like

this, then what will happen? Let us see, well, this A is coming from outside, right, A is

the external input which is coming here. Now you first say; you have saying A equal B

equal to A. So, whatever is A that is first coming to B. So, A suppose the value of A was

x let us say.

So, x will come here, then this statement will execute B is going to C. So, B has already

got x that x will go to C, this x will go to C; then D equal to C, C is got x; x will go to D;

x will go to D; E equal to D that x will go to E. So, whatever was the value of A is

directly going to E. So, it is not exactly like a shift register, it is working because the

earlier case it was not.

(Refer Slide Time: 23:46)

So, the previous value of D was going to E then C was going to D, then B was going to

C, then A was going to B. So, A was not overwriting everything. So, if I change the

order; whatever new value I have applied to A that will be overwriting B, then C, then D,

then E; all of them will become x.

So, actually the synthesis tool will also do this analysis and it will find out well actually

what you are meaning is D equal to A. See the synthesis tool whatever you specify, it

will always try to do some optimization even if you specify a function, it will do some

minimization and try to get the best circuit here also.

(Refer Slide Time: 25:48)

You have provided some specification, but the tool does some analysis and finds that

well what you mean E is actually D equal to A, right. So, instead of a shift register, what

it will be generating is nothing, but a single flip flop whose E equal to you know, D equal

to E equal to final E. So, the A will be going directly to E.

So, the intermediate things are not generated. So, although you might have wanted a shift

register to be generated, but the synthesis tool had applied some intelligence and found

out that the way you have specified using blocking statements, it is not really a shift

register specification, you are directly just assigning the input to the final output. So, it

will be generating a single flip flop, right. So, whatever I have said is mentioned, here

effect of assignment B; A goes to B, B goes to C, C goes to D, D goes to E, so because

they are executed sequentially. The final result is A will be going to E. So, synthesis will

be generating a single flip flop like this, right.

(Refer Slide Time: 26:50)

So, see if you had done the same thing using non-blocking assignments, then irrespective

of the order in which you give the statements, it will still be a shift register; these 4

statements you can do any permutation; you can bring the first statement third last

statement first; any order you specify, but the meaning is same all the right hand sides

will be evaluated at the same time read and they will be assigned at the same time. So,

shifting will be shifting; it will not matter depends on in which order you are just putting

or writing the statements in the block. So, here if you are using non-blocking statements,

the statements can appear in any order, still it will be a shift register.

So, as you can see; as I mentioned earlier that for this kind of clocked sequential circuits,

non-blocking assignment is a much safer option because here is one big example that

even if you just interchange these lines by mistake; still your final circuit will be a shift

register. It will not change; it will be a right hand side expressions are evaluated all in

parallel because they are evaluated in parallel. The order is not important. They will

finally, go to E, C will finally, go to D and so on. The old values will go to this, it does

not depend on the order in which put these statements. So, it will generate a shift register

like this.

So, this is what I am emphasizing repeatedly that whenever you are modeling a

synchronous sequential circuit, it is always a very good practice to use non-blocking

assignments. So, that the errors like the one, I try to highlight can be avoided.

So, with this we come to the end of this lecture.

Thank you.

