
Hardware Modeling using Verilog
Prof. Indranil Sengupta

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 12
Verilog Description Styles

In the lectures that we have seen so far, we have looked at a number of examples where

we took some modeling instances and showed; how we can create the description using

Verilog. Now in this lecture, we shall be starting our discussion on the various ways in

which we can model or create the description of a system or a digital block that we are

trying design.

So, the topic of a lecture is Verilog description styles.

(Refer Slide Time: 01:05)

So, broadly speaking, there are two different styles of description; I have already given

you some examples of these. So, you have seen some examples, but broadly speaking the

description styles can be categorized into two different types the first one is the so called

data flow description style which uses continuous assignments using the assign statement

that you have already seen in many examples. So, this uses such kind of assignment

statements using assign. Now as an alternative, you can have behavioral design or

description styles as well where you use some kind of procedural statements which are

somewhat similar to a program in a high level language that too sometimes, right, you

see whenever you write a program in a high level language like C or any such language

you try to specify; what exactly you are trying to do the different steps.

So, this is what you or this is how you specify what you are trying to do. So, in that

sense, the behavioral model is somewhat similar. So, you use some kind of procedural

statements; which is similar to the construct; which are available in a high level

language; these will see and here in place of continuous assignment, we shall be using a

different kind of assignment statement called procedural assignment which again is of 2

different types; one is called blocking assignment, other is called non blocking

assignment.

So, over the next few lectures, we shall be discussing these different alternatives and

variations and see that which one to use when and why, fine.

(Refer Slide Time: 03:08)

So, let us start with continuous assignment or the data flow style which have already

seen in sufficient detail, but just for the sake of completeness, let us also look at it once

more. So, the data flow design style is identified by the keyword assign. So, whenever

you want to make some assignment like a equal to b plus b or sin equal to Z 15; bit

number 15 of a vector Z. We use this keyword assign before that now I mentioned earlier

also whenever we use an assign this forms a static binding, it is not that whenever this

statement is executed b plus is computed and the value is stored in a not like that

whenever you write a equal to b plus c something like this will be happening.

(Refer Slide Time: 04:02)

Let say b is a register, c is another register. So, there will be an adder which will be

generated which will be adding b and c and the result will be generated or stored in a net

which you are calling a. This a is not an registry just a net. So, the whenever either b or c

will change, this a will change immediately after the delay of this adder. So, there is no

concept of any clock or anything such an assignment we said earlier also is referred to as

continuous assignment, right

So, there are some constraints in such assignment statements using assign first thing is

that the left hand side must be your net type variable typically a wire, but; however, the

expression that we are using on the right hand side here b plus c here z 15; these

expressions may consists of variables which can be either net or register or any

combination of the 2 and this is called continuous assignment because this is

continuously active; there is no signal that tells you that when this operation will be

carried out and when the output will be stored in that target. So, it is not like that it is

some kind of continuous assignment whenever one of the input changes the output net

value will be changing or be affected right away after the necessary delay of the circuit,

fine.

So, these kind of assign statements typically; we use it for modeling combinational

circuits, but we shall see that we can also use this for modeling sequential circuit

elements which are of course, not very common, but we can also do this, we shall be

taking some examples later, right.

(Refer Slide Time: 06:18)

(Refer Slide Time: 06:36)

Now in a Verilog module, we can have any number of assignment statements assign

statements and this is a very typical structure. So, whenever we write a Verilog module

let us say; this is a Verilog module, it starts with the keyword modulem it ends with end

module.

So, in the beginning, we typically start with the signal declarations all the net and the

registered variables are different there, then after that we usually club all the assign

statements together, this is the normal practice and then the other kind of statements will

come which you shall see later right this is how a typical Verilog module structure look

like where the assign statements are typically placed in the beginning, right after the

signal declarations. And another thing I also mentioned that in the assign statement, we

just tell or say what we are trying to do suppose, you write a equal to b plus we are just

saying that we want to add b plus b and c and we want to store the result back in a, but

we are not telling what kind of adder to use how to add and so on. So, this is more like a

behavioral description, we are specifying the behavior, but not the exact structure of the

circuit.

So, now we shall see a number of examples; typical usages and while we are going

through the examples, we shall also learn about a number of things there.

(Refer Slide Time: 08:20)

Fine, this is one very simple example; we saw an example of multiplexes earlier. So, here

we are generating a MUX like whenever we have a module description like this. Now

see now right here, we are not talking exactly about simulation, we are talking about

what will happen when let us say we are using a synthesis tool to synthesize our circuit.

So, for that purpose; what will happen how this synthesis tool will be carrying out

synthesis and what kind of hardware blocks or modules will be generated.

So, let us see his example. So, in this example you see that we are using a module called

generate MUX which as 3 parameters the input is a 16 bit quantity it is a 16 to one MUX

4 bit select line and a single bit output. So, we are simply using a single line description

which says assign out equal to data of select. So, data is like a vector 16 bit vector select

is a number 4 bit number which selects one of the bits and that particular bit goes to out.

So, which is what MUXs.

Now whenever the Verilog synthesizer encounters such a description a multiplexer will

be generated. So, how does this synthesizer know that a multiplexer will be required to

be generated the keyword is a non constant index in the expression on the right hand

side. So, whenever there is a vector which I am using with the non constant index select

is a variable right it is not a constant. So, the index value is a variable then we will be

generating a multiplexer. So, the data whatever is there that will be the input to the

multiplexer and this variable will go to the select line and this out will be the output

point.

(Refer Slide Time: 10:40)

Now, the point to note is that like as I had said with example, I have shown that

whenever there is a array reference with the variable index, the multiplexer will be

generated, but; however, if on the right side, it is not a variable, it is a constant, let us say

like this assign out equal to data 2, then, no multiplex will be generated because you see

data is nothing but an vector. Vector means a collection of bits.

(Refer Slide Time: 11:17)

So, it is a 16 bit vector. So, the index is the index values will go from 0 up to 15.

So, when we say assign out equal to data 2, what will happen is the data 2 is this bit; this

bit will straight away be taken out and this will be called as out. So, no circuit will be

generated, it will be just wiring; this particular bit will be connected or it will be given a

name out; this will be what will happen if I give an assignment like this; no gates or no

hardware blocks will be generated for an assignment like this, but if I write like in the

previous example, assign out equal to data, but I give a variable SeL, here I do not know

which bit I want. So, here you need to synthesize or generate a multiplexer where the

input will be your data your; this will be your select lines and on the output side you will

be getting the output bit out right.

(Refer Slide Time: 12:38)

So, let us take another example. Here this is also an example for multiplexer, but we are

using a conditional operator here. So, what you are doing? Let us try to understand this a

and b are 2-4 bit vectors. So, the index goes from 0 to 3 in this order, we have set,

similarly f is another 4 bit vector which is the output and SeL is an input and in this

conditional operator we are saying that if SeL is true SeL is a one bit vector if this is true

means it is 1, then you select a else you select b, select a, means a will be assigned to f

otherwise b will be assigned to f.

So, actually what will happen here? This will be generating a since every conditional

operator will be generating a multiplexer because it is f, then else, but here, this a and b

are both 4 bit vectors and f is also a 4 bit vector, you see whenever you have a

conditional thing; what you are doing you are checking for a condition, if the conditional

is true, you are selecting one, if the condition is false, you are selecting the other. So,

what you are actually generating is a 2 to 1 MUX.

(Refer Slide Time: 14:00)

You will be generating a 2 to 1 multiplexer, but here what has happened in the example

that I have given both a and b and f, they are all 4 bit quantities. So, actually it will not

be 1 2 to 1 multiplexer, but 4 such multiplexers will be generated.

So, each of them will be having 2 inputs and 1 output; there will having a common select

line SeL. This will be connected in parallel to all of them. Now in the inputs will be

connecting for the first one a 0 and b 0, the second will be connected a 1 and b 1 third

one will be connecting a 2 and b 2 and fourth one; we are connected a 3 and b 3 and in

the output side, this will go to f 0, this will go to f 1, this will go to f 2 and this will go to

f 3; f 3. So, you see a statement like that using conditional automatically generates an

array of multiplexers like this and this multiplexers will all be 2 to 1 multiplexers, right.

(Refer Slide Time: 15:38)

So, here the point to observe is that. So, whenever you have a conditional expression like

the one we have seen we have shown in the right hand side; automatically a 2 to 1

multiplexer will be generated. Now in the example which you are shown because a, b

and f vectors; so, it was not one, but an array of 4 such multiplexers where generated.

Now let us take an example, suppose I have given an assignment statement like this. So,

what will be the hardware; this assignment statement will be generated. Let us try to

work this out.

(Refer Slide Time: 16:15)

So, our statement that we have seen is assign f equal to this is a conditional. So, the

condition checking that we are doing is a equality 0, if it is true, c plus d, if it is false c

minus d.

So, this is what we are actually trying to do. Now let us see; so, here what will happen

here? There will be a multiplexer which I will be; I am just showing one multiplexer, but

actually; it will be an not one, but several multiplexers; I am using the array notation; 2

to one multiplexers using the array or vector the notation. So, it will be having 2 inputs,

these are not single lines, but multiple lines. Similarly, it will be having an output not one

multiple.

So, in the select line, we will be comparing a with 0. So, there will be a magnitude

comparator. So, I need a magnitude comparator circuit which will be taking a as input, it

will be comparing it with the number 0 and the result of the comparison will be fed to the

select line. So, either this will be true or this will be false and on the other side, I use an

adder where I have fed the numbers c and D this sum, I am connecting here and I also

have a subtractor where again I have fed the number c and d, this I am connecting here.

So, this will be the kind of circuit that will be generated. Now let us say if this adders, let

us say this is all 16 bit operation, this is number SeL, all 16 bits, then actually, this is a

vector kind of a notation the output is f. So, actually it will be not one multiplexer, but 16

such multiplexers will be generated one for every bit of this data they are 16 bits. So, 16

bits have to be multiplexed. So, I need 16 2 to 1 multiplexers, right.

(Refer Slide Time: 18:33)

So, let us take another example. This is the example of a decoder means this is an

example which will generating a decoder. So, here you see what you have given; here we

have one input in is a single bit input, select is 2 bit vector and out is a 4 bit vector and

what we have written a something like this out with in index of variable equal to in. So,

now, the array access with the variable index is appearing on the left hand side. So,

whenever such a thing happens a decoder will be synthesized.

So, if we have on the left hand side non constant index select, then a decoder will be

generated. So, what the decoder will do the input value will be going to one of the

outputs depending on select.

(Refer Slide Time: 19:34)

So, now your circuit will be something like this. You have a decoder or a de multiplexer

whatever you call the input will be in single bit data, but in the output, there will be

several lines, this will be your out and this input will be connected to one of the outputs

and which one that will be determined by the select line select. So, in a assignment

statement, if there is on the left hand side an expression like this out with the variable in

the index then a decoder will be generated.

(Refer Slide Time: 20:19)

Now, again if instead of a variable, there is a constant, this will again generate a simple

wire connection, this in whatever is in it will directly be connected to the fifth bit of the

vector out. So, there will be no circuit that will be generated just a wire. So, as I had said

whenever the synthesis tool will find out a variable index in the left hand side, a decoder

is generated and if it finds a variable index in the right hand side, a multiplexer will be

generated. So, these are some simple rules which the synthesis tool often uses or utilizes,

fine.

(Refer Slide Time: 21:02)

Now, here we take an example where we are using an assign statement to describe a

sequential logic element which is actually a level sensitive day type latch. So, what does

this do? this you will be capital. So, what is this description doing? There are 3

parameters D and enable at the inputs and Q is the output. So, what is this assignments

statement doing, it is saying if enable is true; that means, it is 1, then D will be going to

Q otherwise if enable is 0, Q will be going to Q, Q will be going to Q means it will be

remembering its previous state there will no change.

So, this Q will be going to Q, this kind of assignment whenever it is there. So, the

synthesizer will immediately deduce the 12, I need to generate a latch or a memory

element because I have to memorize some data value. So, as this example says that for

certain condition of the enable when enable is 0, I have to remember the value of Q

because the output Q will be equal to the old value of Q.

So, this will correspond to the state table like this. So, when enable is 0, this Q will be

selected. So, D will be do not care irrespective of D; whatever was the previous value of

Q, I am denoting as Q n minus 1 that will be the new value of Q, I am calling it Q n, but

if enable is 1, then whatever is the value of D that will be copied to Q.

(Refer Slide Time: 23:01)

So, this single assign statement will be generated a D type latch. Similarly, if you look at

a simple R S or S R type latch using a cross coupled gates, here I am showing NAND

gates; cross coupled NAND gates. So, a circuit like this which is 2 input R and S and Q

and Q bar. So, if you again look at this state table what will happen if both S and R are

one and one then whatever is Q bar Q and Q bar, let us say Q is 1 and Q bar is 0, if this is

1; 1 will come 1 and 1 will be 0 and 0 and 1 will be 1; so no change similarly for the

rivers.

So, when the inputs are 1 and 1 the previous input value will remain this is the behavior

of this circuit, but if is S equal to 0 and R equal to 1, S equal to 0 will force this output to

be become 1. So, Q bar will be 1 and Q will be 0 because if Q bar is 1, this one and R

equal to 1 will make the output of NAND gate 0. So, Q will be 0 similarly if S is 1 and R

is 0, the reverse will happen if R is 0, Q will be one and this 1 and 1 will make this 0 and

hence this is 1, but 0 is an indeterminate state if we apply 0 and 0 then you see these are

NAND gates; both output will become 1 and 1 which is inconsistent with Q and Q bar

not only that after that if I apply 1; 1; what S Q n minus 1 that will be confusing to the

hardware and also to the simulator because this is not a validate state both Q and Q bar is

1.

So, which one will become 0 that will depend on the relative delays of this 2 gates which

one is faster that will force the output to it to change first that is called race condition,

fine. So, this circuit the exactly the way I have shown here; you can use 2 assign

statement in one assignment; you are using the NAND of Q bar and R to generated Q

and the other 1 Q and S to generate Q bar.

(Refer Slide Time: 25:23)

So, just like this 2 just 2 assignment statements this is NAND and the NOT R and Q bar,

this is Q and S and Q, this is Q bar just to assign statement to be generating 2 NAND

functions and this will be specifying the behavior of this latch.

Now, just for the purpose of testing we also wrote a sample test bench for this to check

whether this latch is actually working like a latch should work. We wrote a test bench

like this, hope where this S R latch was instantiated we call it lat. So, this S and R which

were the inputs were declared as latch and Q and Q bar, the outputs were declared as

wire and we monitored all the variables S R Q and Q bar. So, what we did initially, we

said the input S R; R to 0 and 1. So, if the inputs are 0 and 1 the output should be 0, then

we said the inputs to 1 and 1. So, that the output should not change, then you change to

the other state 1 and 0. So, the outcome should become Q should become 1, then 1 and 1.

Then just for testing we applied the invalid condition 0, 0 followed by 1, 1 to see that

what this simulator does here.

(Refer Slide Time: 26:53)

So, what this simulator did was something like this; first few lines was absolutely perfect

what we expected S 0, R 1 generates Q 0 and Q bar 1, then we apply both 1 1. So, the

same state remains no change, then we apply 1 and 0. So, Q becomes 1 and Q bar

becomes 0, then 1 1 same state no change then we apply S equal to 0 R equal to 0 which

is 1 and 1, but after that we again 1 1, but the problem is that the simulator got confused

and the simulator hangs; it continuously try to deduce that what will happen when S

equal to R equal to 1, but because of the race condition the output never converges. So,

simulator assumes that the 2 gates have exactly equal delays.

So, when the outputs are 1 and 1 and we apply 1; 1 outputs will become 0 and 0 next

state; it will again become 1 on 1 next state, it will again become 0 and 0. So, both the

outputs will oscillate in definitely, it will never converge and the simulator will go on

trying to compute the output value indefinitely. So, this was exactly what was happening

here, right. So, crux is that you should not apply such invalid inputs to an S R flip flop in

actual circuit operation.

So, with this, we come to the end of this lecture; where we have actually looked at some

of the modeling styles. In particularly; looked at the assign, again we took some

examples of assign; earlier also just work out a number of examples. So, we again saw

assign here and we saw that not only combination circuits, we can also model sequential

circuit elements whatever circuits I can draw using gates I can also implement that using

assigned statements like you know; how to design flip flops I just show the example of a

cross coupled NAND gates you can design a j k flip flop, S R flip flop, t flip flop, all

using gates NAND gates NOR gates, then H triggered flip flop. So, once you have a gate

level, circuit diagram using assign statement or using instantiation of the gates, you can

create those designs. So, those are also some ways to create sequential circuit elements in

Verilog.

So, in the next lecture, we shall be continuing with some more Verilog constructs and

examples.

Thank you.

