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So, in this lecture, we shall be working out another example. See working with examples

is good in two respects one is that it can give you confidence in actually learning about

the language and how you can approach the design of a thing; and secondly, you can

actually understand the flow the design flow how it is actually done in practice. So, the

second example that we will  be taking is  a slightly  more complex example then the

multiplexer we took last time. This is the example of an adder and means an adder circuit

which is part of an arithmetic logic unit - ALU.

(Refer Slide Time: 01:03)

So, this is our lecture topic.



(Refer Slide Time: 01:06)

So, we describe an adder; again we start with the behavioral description of an adder.

Now, let us see that what we are trying to do here now.

(Refer Slide Time: 01:26)

This adder is just symbolic as an example we have taken, but in general let us call it

these an arithmetic and logic unit, but in the code that I will show will only talk about

addition. So, what does the ALU do, the ALU will take two data as input, let us call them

X and Y and it will be generating a result let us call them as that Z as output. So, the

example that I will be illustrating I shall be only talking about addition. And when this



structure of course will be elaborating an addition we shall be looking at one more thing

what we shall be looking at the process of generation of the status flags.

See in many processors, I mean you may be aware of there has some status flags which

are automatically set as a result of some arithmetic or logic operations. So, this status

flag that we shall be looking are sign, zero, carry, parity and overflow. This status flags

actually will give us some idea regarding the addition operation that have been taking

place. This sign flag will tell whether the result is negative or positive, this zero flag will

tell whether the result is zero or non-zero, the carry flag will tell whether there was a

carry out a of the addition. The parity flag will tell whether the number of ones in the

result is odd or even; and overflow will tell that well the result means after addition I

have done something which is not fitting there is an overflow, so whether there is an

overflow or not. So, we shall be looking at the design of an adder with the generation of

this five status flags.

(Refer Slide Time: 04:06)

So, we start with the version one of our design which is the behavioral description of the

adder. So, this five status flag I have already mentioned, fine.



(Refer Slide Time: 04:19)

Let us straight away look into the design. This is our behavioral design of our ALU or the

adder. You see what are the parameters the name of the module I have given as ALU, X,

Y, Z; X and Y are the inputs. Let us assume they are 16-bit numbers 0 to 15, Z is the

output. And these are the five flags – sign, zero, carry, parity and overflow, these are all

outputs. Now, the addition operation I am doing using a behavioral fashion using the

single statement – assign, carry and Z using the concatenation operation, because Z will

be the result. And the carry out of the addition that will go in to the carry flag right that is

the carry. So, I am generating carry right away like this, carry and Z this will be 16 plus 1

- 17 bits equal to X plus Y.

Now,  the  other  status  flags  how  are  they  generated.  Well,  sign  well  numbers  are

represented in twos complement form typically. Now, in 2’s complement representation

the most significant bit of the number indicates the sign; if it is 1, it is negative; if it is 0,

it is positive. So, the MSB of the result Z that will go into the sign flag straight away. So,

we are straight away assigning Z 15 to sign the most significant bit. Zero flag, what is

zero flag? Zero flag will tell whether the result is zero or not which means Z the 16-bit

sum it is zero or not, zero means all the bits are zero. If it is zero, this zero flag will be set

it will be 1. So, what kind of operation do you require if all the bits of Z are 0, I have to

set Z flag to 1; zero flag to 1. So, I need a nor operation I take or of all the zeros, if the

inputs are all zero, output of OR will be 1, then a NOT it will be the OR will be zero,



then NOT it will one, so NOR will be 1. So, I need a reduction operator NOR, just I

write assign zero equal to reduction NOR on Z that will be 0.

And parity is just exclusive nor if it is even parity it will be 1; if it is odd parity it is 1, it

is 0. So, simply write assign parity equal to again reduction operator exclusive NOR of

Z.  So,  generation  of  sign  zero  and  parity  are  very  simple.  Now, overflow there  are

various ways to detect overflow. The way we are implementing overflow is like this. Let

us say we have a number X and Y, this is our bit number 15 or most significant bit, and

this is the sum Z. So, here also we have bit number 15. Now, here we are saying that

there will be overflow if the condition that has to be followed is this. I am just writing

down then I am explaining. This means that either both X 15 and Y 15 were 1 and 1, this

is a dot means AND operation, plus means OR operation, X 15, Y 15, Z 15 bar which

means this is 1, this is 1, and this is 0.

So, the numbers were negative after addition the number has become positive which is

never  possible,  this  is  possible  only  when  overflow  has  taken  place  or  the  reverse

condition, this was 0 this was 0, but in the sum it has become 1, the numbers are positive,

but this sum is showing us negative. So, if we implement this logic that will give you the

overflow straight away right. So, here we have done exactly that we have used this same

expression to generate the overflow right. So, this is the behavioral description of the

adder.
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Now, just like in the example we showed earlier we have also written a test bench here.

So, we called it as ALU test. So, we have instantiated this module called ALU these the

module ALU. So, I have given this name DUT and the parameters are given. So, again in

the initial block we have given dumb file dumb variables. We have monitored the time X

Y, Z and Z all these status flags. So, here we instantiated the status flag names have given

as S, 0, ZR CY, P and V in the same order same order we have given the variable names

same order. So, this names you can change same names are not required. And the input

data that you applied are you can see with delay of 5 5 5, we have given. Un the first step

we have given the first number X equal to 16 bit hexadecimal 8 F F F and 8 0 0 0.

(Refer Slide Time: 10:56)

So, let us a just note down this numbers at time 5, we have applied X equal to 8 F F F

and Y equal to 8 0 0 0. Then again after a delay of 5, we are applying X equal to F F F E

and Y equal to 0 0 0 2. So, after delay of 5 means at time 10, we are applying X equal to

F F F E, Y equal to 0 0 0 2. And gain after delay of 5, we are applying X is A A A A and

Y is 5 5 5 5, so that time 15 X is A A A A, Y is 5 5 5 and 5 right. So, let us see just by

normal addition what will be the sum. If I just add 8 F F F, and X and Y equal to 8 0 0 0

Z will be F and zero is F, F and 0 is F, F and 0 is F, and 8 and 8 will be 0 and there will

be a carry out. And here E and 2 if you add it will be 0, there will be a carry. So, 1 and f

will be 0 carry 1 and F will be 0 carry 1 F will be 0, it will be all 0, and there will be

carry out again. And here A, if you add A and 5 is F, B, C, D, E, F, so F F F F right. So,

this should be the sum and the of course, the flags will be set.
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Let us see. So, if you just Simulate the simulation output is showing this at time five 0fff,

0000,ffff. So, this is exactly what we got here 0fff, 0000, ffff. And in the all cases you

can verify the sign 0fff the sign is positive; 00 this is also, so here you can all check the

signs here zero flag, carry flag, parity flag and the overflow flag, you can check all of

them,  there  will  be  consistent.  So,  this  is  our  simulation  output  with  respect  to  the

description which you have given here right fine. So, it works correctly.

(Refer Slide Time: 14:19)



Now, what we are trying to do here we have just given a behavioral description of a full

adder of an adder now this you want to refine in to more detailed description. So, the first

step what we do, the first step what we do is we had started with the design of a 16-bit

adder right. So, what you are saying will be using 4-bit adders let us take four 4-bit

adders, so they will be all fed with two 4-bit numbers then we generating a sum. So, the

carry in for the first stage will be 0, and this carryout will go into the carry in of this, this

carryout will go into the carry in of this, this carryout will go into the carry in and this

will be the final carryout.

So, let us do a structural design like this. So, now, we are this implementing 16 bit adder

using four 4-bit adders, and connecting them like this ripple-carry between the stages

right.  So,  this  is  our  next  step.  So,  well,  this  what  you got  this  with  respect  to  the

simulation output, we have also shown it here. Here I think there is a small typographical

error this should be s equal to 0, fine s equal to 0. See over here s is 0 and it goes 1 here;

it goes 1 here lasted fine. So, in the waveform also you can see the same thing. So, this is

X this is Y sum is Z you can see the value 0fff, you can see the value 0000, ffff, you can

see the values right, and you can also see the flag value zero or one whatever it is coming

fine.

(Refer Slide Time: 16:30)

Now, in  this  second version as  a  I  said,  we are using 4-bit  adders  with ripple-carry

between blocks.  Now, our  let  this  ALU description  module  description  the  first  part



remains the same, this was exactly identical with the previous one. What you have done

we have just  added a  wire.  So,  why you need this  wire,  we need this  wire  to  just

implement this intermediate carries, this we call as c 1, this we call as c 2, this we call as

c 3 this intermediate carries. So, we are defining them as wires, wires c 3.

(Refer Slide Time: 17:17)

And we have just instantiated four adders like that. Just see exactly like that or here for

the first adder the inputs are X 0 to 3 and Y 0 to 3; for the second adder inputs are X 4 to

7, 4 to 7; next one 8 to 11, and last one 12 to 15. So, for the first adder they carry in is

zero second adder carry in c 1 and for the first adder carry out is c 1; for the second adder

this c 1 is the carry in. Here the carryout is c 2 for the next adder c 2 is the carry in. c 3 is

the carryout for the next one c 3 is the carry in. And the final carryout is carry, this is

how the carry is generated. Because here we have not shown the carry, carry will be

generated like that sign, zero, parity and overflow are shown. Carries coming here and

these are the sum, but the 4-bits adders still will leaving it in a behavioral description like

this, this adder four is the 4-bit adder, this was still defining like this. So, this design if

you simulate  you will  see that  you are still  getting the same simulation  result,  same

simulation output, this you can verify all right fine.
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So, the next stage is that we are actually modelling these 4-bit adders as a repeat carry

adder.

(Refer Slide Time: 18:58)

See here in the earlier design we have just use this 4-bit just four bit adder modules right.

Now, what I am doing is that you see just look at this diagram. This 4-bit adder modules,

so each of this four bit adder modules we are expanding we are using four full adders, we

are using four full adders and using four full adders we are using a ripple-carry adder. So,

the carry output of one will be going in to the carry input of the next, these will be the



inputs and some output these are standard designs of adder. So, we are actually going for

a ripple-carry adder of 4-bits which will be looking like this four full adders in cascade.

So,  this  is  exactly  what  you  have  done.  This  adder  four  module  which  earlier  was

looking like this behavioral this we are making it structural.

Now,  we  are  implementing  adder  four  by  instantiating  full  adder  four  times  and

interconnecting them in a suitable way. Like the first one is getting A 0 B 0 c in is the

carry in; c 1 c 1 is here; c 2, c 2 is here; c 3 c 3 is here; and final carrier out is c out c out.

So, this version is also a very standard way. So, you see if we have this refinement, and if

you  do  a  simulation  again,  you  will  again  see  that  you  will  be  getting  this  same

simulation result. So, I strongly suggest that you should actually go along with this class

not only listening to what I am saying, but also actual implementing and simulating the

codes and sink that whether it is working correctly or not. So, if you do this you will see

that still you will be getting the same result which means that so far our design is correct

so far so good.

Now, this full adders at the end, this full adders also you can implement using structural

way because you see this  is  one implementation  of a full  adder which is  a  compact

implementation which requires a total of five gates - three XOR gates, two and gates.

There are many implementations of full adder; this is one possible implementation. So,

here this structural implementation that I am showing here of full adder uses this netlist.

So, you see this s, cout, a, b, c are the input and output lines; a, b, c is the input, s and

cout are the output and the intermediate wires are s one c 1 and c 2.

So, they are three XOR gates. So, we are instantiating the gates like this XOR g 1, s 1, a,

b, it means this is g 1, s 1 is the output, a b are the inputs. g 2 s s 1 c this is g 2 s, s 1, c.

Last one g 3, cout, c 2, c 1, cout, g 3, cout, c 2, c 1 an and they are 2 g 4, c 1, a, b this g 4,

c 1, a and b. g 5, this is g 5, c 2 this is s 1, this is c. So, you see when you instantiate

gates in a structural way you can group the similar get types together like the three XOR

gates  instead  of  writing  XOR three  times  I  have  written  XOR once  and  just  have

separated them by commas this way you can write.

So, you see now we have arrived at a complete structural description of a 16-bit adder

where  the  individual  4-bit  adders  are  also  ripple-carry.  Now, let  us  also  look  at  an

improved version of this design where this 4-bit adder that I have shown. So, instead of



mapping this in to a ripple-carry adder like this, so we can map it as an alternative way

into a carry look-ahead adder. So, carry look-ahead adder is a faster way to implement an

adder. See in a ripple-carry adder the carry is rippling through the stages. So, the worst

case delay will be the maximum time it takes for the carry to ripple through, but in the

carry look ahead adder, we are generating all the carries in parallel, so that the addition

becomes very fast.

(Refer Slide Time: 24:39)

So, in the next design here we shall or here we are looking at a design of a 4-bit adder,

adder four using carry look ahead principle. Now, here let us skip this.
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We shall come back here before the explaining these description.

(Refer Slide Time: 24:57)

Let us first look at how a carry look-ahead adder works, because this will be required to

understand how you have come up with these expressions, because these expressions

may look a little complicated. So, you see for a ripple-carry adder that means, as you

have seen the total propagation delay will be proportional to the number of stages n,

because as I had said they carry ripples though from one stage to the other. So, carry

look-ahead  adder  is  one  way  to  speed  up  the  addition  where  the  carry  signals  are



generated in parallel for all the various stages. So, effectively the addition time reduces

from order n in ripple-carry adder to order one which is a constant time in carry look-

ahead adder, but the flip side is the drawback is the hardware complexity also increases

very rapidly with a number of bits n.

(Refer Slide Time: 26:06)

Let us see how. Well, if we look at a single full adder. So, in a ripple-carry adder you

look at the ith stage full adder where the inputs are A i, B i and C i the output is a sum S i

and  a  carry  S  i  plus  1.  Now, we are  defining  two signals  or  two you can  say  two

functions called carry generate and carry propagate. Well  carry generate specifies the

condition where a carry is generated it in the full adder irrespective of the carry in the

condition is whenever both the data inputs A i and B i are 1, then carry will be generated

irrespective  of c i.  So,  that  is  g i,  g i  is  A i  and B i  and propagate  carry propagate

represents  the condition  it  says that  when the input  carry will  be propagating  to  the

output. What is that condition? The condition is means among A and B at least one of

them means exactly one of them should be one, and the other should be zero. Suppose it

is 0 and 1 then if there is a carry coming 0 1 1 that will generate a carry the carry will be

propagating. So, this is the condition for carry propagation exactly one of A i and B i

should be 1.

So, this carry propagation is defined by the exclusive odd function. This is generate and

propagate. So, g i and p i you can implement by NAND gate or an XOR gate right. Now,



with this you can write that the output carry expression output carry will be given by will

either the carry is generated or the propagate condition is true and there is an input carry.

So, c i plus 1 you can write down as by an expression g i or p i, c i. Now, this you can

use recursively to find out an expression.

(Refer Slide Time: 28:25)

C i plus 1 equal to g i plus p i c i. So, you can write this c i, you can write as g i minus 1

plus p i minus 1 c i minus 1, you can expand it like this. This c i minus 1 again you can

write as g i minus 2 plus p i minus 2 c i minus 2, like this you can recursively go on

expanding. So, I am not showing you the whole thing. See, basically what it means I am

just writing down some simple expressions.
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See, what you got is c i plus 1 equal to g i plus p i c i. So, you can generate the carry for

the first stage c 1 as you just substitute i equal to 0, g 0 plus p 0 c 0. So, what will be c 1

this c 1, c 2, c 2 will be again you put g put i equal to 2, and i equal to 1, so g 1 plus p 1 c

1 right. Now, c 1 you have already got this. So, you can substitute c 1 here. So, this

becomes g 1 plus p 1 multiplied by this, so p 1 g 0 plus p 1 p 0 c 0. You go to c 3 c 3 will

be g 2 plus p 2 c 2. Now, c 2 you have already got this, so this will be g 2 plus p 2

multiplied by this multiply this p 2 g 1 plus p 2 p 1 g 0 plus p 2 p 1 p 0 c 0 and so on like

this we will be getting this expression. So, c all the carries you can get just by a two level

and or kind of expression, there is no question of carries rippling through, but as you go

on this expressions become more complex, bigger expressions, more number of gates

this is what I was saying.
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So, actually this is what I have just now showed c 1 is this, c 2 is this, c 3 and c 4. So,

you require so many gates. And some you can directly generate, you see p is nothing but

A and Bs XOR. So, the sum is the XOR of all the three bits. So, you can simply write p 0

X or c 0. Similarly, S 1 is p 1 XOR c 1 and so on you need 4 XOR gates.

(Refer Slide Time: 31:16)

So, in a carry look-ahead adder in a yeah carry look-ahead you have a circuit first which

generates all the g and ps which means XOR and AND gates. Then we have a carry look-

ahead circuit which implements these functions c 1, c 2, c 3 c 4 using AND, OR circuits.



So, it generates c 0, c 1, c 2, c 3 and also c 4. So, now, you can directly generate this

sums  by  using  XORs,  XOE  the  carry  with  the  ps.  So,  the  total  time  is  constant

irrespective of the number, there is no ripple of the carry. So, this will be much faster.

So, just remember these expression and the sum expressions. So, if you remember these

expressions you can just correlate that what you have done is exactly that, here the carry

propagate and generate signals I have defined as a wires in between and the intermediate

carries also. So, p 0 is A 0 XOR B 0; p 1 A 1 XOR b 1 and so on. Similarly, the generate

signals and A 0 and B 0, A 1 and B 1 and so on. So, I generate the propagate signals, I

generate the carry generate signals then I generate all the carry signals, c 1 equal to g 0

OR p 0 cin, cin is c 0. You see this expression c 1 equal to g 0 or p 0 this c 0 is cin; c 2 is

g 1 p 1 g 0 p 1 p 0 cin exactly we have written down that expression. c 2 equal to g 1 or p

1 g 0 or p 1 p 0 cin c 3 and c 4 is finally, cout. So, as you can see as the number of bits

increases these expressions are becoming more complicated and finally, sum is the xors.

So, this is a carry look-ahead adder.

So, in the same way as I had said you can replace a module by a better or an improved

module. You replace a module by another module like, for example, we replaced a 4 bit

ripple-carry adder by a 4 bit carry look-ahead adder we have got a faster adder, but we

can do simulation  and you can find out  that  functionally  our design is  correct.  It  is

working correctly. So, this actually completes a our discussion for today’s lecture. See

what I try to illustrate over the last two examples we discuss is that when we look at non

trivial  designs slightly bigger designs we often break the design up in a  hierarchical

fashion. Whatever something was discussed in a or described in a behavioral fashion at

one  level,  we  do  a  some  kind  of  iterative  refinement.  We  break  that  behavioral

description into structure description, try to be more detailed and we repeat the process

until we reach a point where our entire design becomes structural.

So, in a normal digital system design, you will see later that well we do not only have

combination circuits, we also have sequential circuits flip-flops, state machines and so

on. So, we shall see later that when we have such a system where we have combination

circuits, registers, and also lot of finite state machines, there it may not be worthwhile to

convert  all  the  modules,  all  the  descriptions  into  structural.  Well,  the  data  path  the

circuits where the actual calculations or computations have carried out, those of course,

we can convert into structural fashion. But the controller the circuit which implements a



finite set machine which generates the control signals often that we do not convert into a

structural fashion, because it involves too much of a work on the part of the designer. So,

we shall just learn these things slowly over the next lectures.

Thank you.


