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More On Dynamic Programming

So, we talk about dynamic  programming which we have seen earlier  also,  you have

started. So, we will talk about more on dynamic programming.

(Refer Slide Time: 00:35)

So, it is very exciting topic. So, dynamic programming in short it is called DP. So, it is

basically  a  very  powerful  general  powerful  design  technique.  So,  I  mean.  So,  it  is

basically  a  powerful  general  powerful  design  techniques  to  solve  the  problems

algorithmic design technique. So, basically it is a careful brute force. So, DP is basically

careful brute force or exhaustive search. So, in exhaustive search the time is exponential.

So, we look at the all possible solutions. So, that is called exhaustive search or brute

force. So, that is the exponential algorithm, but we reduce that exponential space to the

polynomial space carefully. So, that is the technique of dynamic programming. So, it is a

basically; we reduce this exponential space to polynomial space. So, that is the idea.



So, it is specially good for kind of optimization algorithm like if there is a (Refer Time:

02:13). So, dynamic programming is very much useful for optimization algorithm. So, it

is basically. So, we have a problem we reduce this problem in a sub problems. So, by

recursively; so, this is basically sub problems we have to get the sub problems and then

we  reuse  the  sub  problem.  So,  this  is  by  recursively.  So,  this  is  the  recursion.  So,

recursion and then we reuse this sub problems to get the; I mean we reuse the value of

we reuse this value in the whole problem. So, this is the idea. So, basically we discuss

this through some example like problem like finding the Fibonacci number and then the

shortest  path  problem.  So,  let  us  just  start  with  the  Fibonacci  number  problem.  So,

finding the nth Fibonacci number; so, these we have discussed already in the beginning

of few beginning of our; this course like when you start the divide and conquer approach.

(Refer Slide Time: 03:47)

So, there we have discussed this. So, just to bring this problem and we will see how we

can solve this using a dynamic programming technique.

So, here is the definition of the Fibonacci number problem, Fibonacci numbers. So, what

are the Fibonacci numbers basically you start with one; 1, then 2, then 3, then 5, then 8.

So, sum of previous 2. So, this is basically it start with say F one is one which is same as

F 2 and then F n is nothing, but F n minus 1 plus F n minus two. So, this is the formula.



So, the our goal is to find the problem is to find the nth Fibonacci number nth Fibonacci

number that is F n. So, this is the problem we have to find F n. So, n is an input say we

have to  find F 2 thousand seventeen.  So,  n  is  2  thousand seventeen.  So,  this  is  the

problem. So, finding the nth Fibonacci number. So, what is the naive of algorithm to

solve this problem?

(Refer Slide Time: 05:22)

So, what is the correct algorithm to solve this problem? So, if you use this recurrence.

So, you have to use this formula. So, this is the naive algorithm.

So, we have to follow the recursive formula like. So, suppose you want to find this is the

call, now if n is less than 2 we return 1. So, this is the base case otherwise else. So, else

what we do we compute f of fib of n minus 1 last fib of n minus 2 and we return f. So,

this is the correct algorithm. So, to compute the f n nth Fibonacci number; so, this is the.

So,  this  is  the  recurrence,  this  is  the  recurrence,  right.  So,  this  is  coming  from the

definition of the f n. So, this is the recursive definition and this is what is called base

case. So, now, what is the time complexity of this algorithm or of this code? So, time

complexity this is exponential algorithm why because if T n is the time to time for this

then T n is basically we have 2 call T n minus 1 plus T n minus 2 plus theta 1.



Now, the why this is exponential this is basically we can write as greater than equal to 2

T n minus 1 plus theta of 1. So, this will again give us greater than 2 to the power n by 2.

So, this is basically exponential algorithm. So, now, this is a exponential time algorithm.

Now you want to use the technique which is called dynamic programming technique to

reduce this exponential algorithm to the polynomial time algorithm like linear algorithm.

So, we will use 2 techniques to do that one is memorization; memoize DP algorithm

another one is bottom of DP algorithm. So, first let us start with memoized DP l because

this is exponential exponential is bad. So, you want to reduce this we want to use the DP

technique to reduce this time complexity from exponential to polynomial.

(Refer Slide Time: 08:31)

So, this is the first technique we will use memoized DP algorithm. So, memoize mean we

will remember once we compute a value we remember. So, we will use a dictionary we

will put the values over there, so that we do not need to compute it again. So, that is the

memoization  remembering.  So,  we  remember  the  value.  So,  this  is  basically

remembering. So, we remember the value. So, what is the how we remember we use a

dictionary once we compute the value we put it into dictionary.

Now, when we now we look at the dictionary they if the value is there then we will get

that  otherwise  we  have  to  compute  it  and  once  we  compute  it  we  put  it  into  the



dictionary. So, that is the memo memoize that is the remembering. So, suppose this is our

dictionary which is empty initially and say this is the code and now we are computing fib

of n now if n is not in the dictionary if n is in memo, then we return memo n. So, this is

just a kind of table lookup we do what else if; then the code is similar to earlier is the

recursive call else if n is less than 2 then F is equal to 1 else we compute we call fib of n

minus 1 F of minus 2 and then we put this into the memo and the return F we return f.

So, this is the recursive step same as earlier, but here we are just look at the table we had

just look at the dictionary. So, if that is in the table then we are just we are just not

computing that otherwise we are computing that.

So, this we can this type of technique we can use for any recursive algorithm this kind of.

So, let us look at the recursive tree for this code. So, so suppose we want to compute F of

n.

(Refer Slide Time: 11:41)

So, to compute F of n we need to compute F of n minus 1 F of n minus 2. So, in order to

compute F of n minus 1 we need to compute F of n minus 2 F of n minus 3. So, here also

we need to compute F of n minus 3 F of n minus 4. So, like this again we need to

compute F of say F of n minus 2 means F of n minus 3 F of n minus 4 F of n minus 4 F

of n minus F of n minus sorry F of n minus, minus 1. So, F of n minus 4 F of n minus 5



like this. So, this is the exponential time algorithm. Now here if we look at this tree and

these trees are same and this tree and this tree are same. So, there are many sub problems

are going on. So, this is one of the hallmark of dynamic programming technique dynamic

programming problem. So, if you are many sub problems. So, by once you calculate this

because here we are again calculating this once we calculate this why to calculate  it

again.

So, to avoid that; we are going to memorize that we are going to remembering that value.

So, we are going to store into the table. So, that is the idea. So, this way we are saving

the  time  otherwise  this  will  be  exponential.  So,  this  is  the  technique.  So,  we  are

memoizing we are storing this once we calculate this we are storing into the dictionary

now once we are going to calculate these.

(Refer Slide Time: 13:34)

We look at the dictionary since we got it will not execute this calculation. So, that way

we are saving the time. So, basically how many non memoized call you have to do. So,

so  number  of  non-memoize.  So,  number  of  non  number  of  non  memoized  call  is

basically. So, we have to calculate this F one F 2 up to I mean fib n. So, n times the

number of non memoize calculation this is n times. Now for memoize calculation. So, so

that is the non recurrence. So, non recurrence; non recursive call non recursive call is



basically takes theta one times because we have we have already calculated this. So,

now, what is the total number of what is the time complexity time complexity is basically

theta of n. So, time complexity is basically theta of n. So, this is basically is telling us

this is basically time is basically number of sub problems into the time to solve each sub

problems this is the amortized analysis because few sub problems we are calculating that

by adding, but few sub problems we are getting from the look of. So, that is the way. So,

basically we are just adding this 2.

So, this is basically time divided by sub problems. So, this is this is basically time per

sub problems and time per sub problems is theta one because we are just looking at the

table to get the value and this is n. So, that is why it is coming to be theta of n n into theta

one. So, this is basically theta of n. So, this is the theta of n times algorithm for solving

the; to getting the Fibonacci number. So, now, we look at another approach which is

instead of memori instead of putting everything into a dictionary we look up what is

called bottom up DP algorithm.

(Refer Slide Time: 16:46)

So, this is basically; this is basically bottom up DP algorithm. So, let us just before that

let  us.  So,  DP is  nothing,  but  recursion  plus  memoization.  So,  basically  idea  is  we

memoized or remember or remember we remember the value which you have already



calculated and we reuse the and reuse the solution to the sub problems. So, that is the to

the sub problem. So, basically, what are the sub problems in Fibonacci numbers? So, this

is basically F one F 2 up to F n. So, these are basically our sub problems. So, there are n

sub problems and to solve each sub problem it is taking constant time because we are

just looking at the table and then getting the value we are adding. So, theta one time and

there are n sub problems. So, that is why it  is theta  of n.  So, this  is  the linear time

algorithm.

So, now we look up the another approach another DP approach which is called bottom

up DP algorithm where we just store the last 2 value instead of putting everything into

dictionary because we 2 just need the F of n minus 1 and F of n minus 2, we do not need

to store the whole dictionary.

(Refer Slide Time: 18:39)

So, that is the idea. So, this is called bottom up DP algorithm. So, what we are doing here

this is the code. So, we have this empty set now for k in the; this is the range of the k. So,

range of the k is basically 1 to n, we are calculating F n. So, our range is 1 to n. So, now,

we have the recursion that recursive formula less than equal to 2 F equal to 1 else F is f

of fib of k minus 1 plus fib of k minus 2 and then fib of k is basically F and we return we

return fib of n. So, this is basically. So, this part it is basically theta of one time. So, this



is this is basically we are just storing last 2 value. So, this is the bottom up way. So, we

start calculating F (Refer Time: 20:28). So, we basically start calculating F one F 2 then

F 3 F four. So, always we store the last 2 value like this.

So, we keep on calculating this way and we ultimately we return this. So, this is the; so,

bottom up way. So, we start with F 1, then F 2, then F 3; when you call F 3, we forgot F

1. So, this way; so, F k; F k is basically F k minus 1 plus F of k minus 2 this way. So,

every time we just store last 2 value of the Fibonacci number and then we add it up to get

the next value; so, when you stop we stop at F n. So, this is the linear this is basically

sorry this is theta of n times algorithm this is the same time complexity as the memoize

DP algorithm, but this has the advantage that the space complexity is less because it has

we are. So, for memoize we are putting everything into the dictionary. So, that size is

that is less. So, exactly same competition,  but less space; so, this is practically faster

because there is no recurrence.

Now, we want to see some topological ordering for this computation of F n. So, like this

is a F n.

(Refer Slide Time: 22:02)

So, to calculate F n, we need to calculate F of n minus 1 F of n minus 2. So, F of n minus



1 F of n minus 2 now to calculate F of n minus 1 I need to get F of n minus 2 and F of n

minus 3. So, and then to calculate F of n minus 2 we need to get F of n minus 3 and F of

n minus four. So, this way dot dot dot. So, this is the; this is basically a topological sort

sorry this is basically a topological sort of sub problems. So, these are the sub problems

sub problems dependency graph dependency a I cyclic graph. So, so this is basically this

is basically the DP approach for this problem. So, this is giving us this. So, our naive

approach  was  exponential,  but  we  reduce  this  into  polynomial  (Refer  Time:  23:32)

algorithm. So, this is basically linear term T turbine.

Now, we have seen this problem can be solved in log in who can remember this problem

of finding the Fibonacci nth Fibonacci number; so, how to how to get nth Fibonacci

number.  So,  we  have  seen  this  in  the  divide  and  conquer  technique  in  the  earlier

beginning of the course.
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So, we have seen this F of n last one F of n; F of n; F of n minus 1, this is this value 1 1 1

0 to the power n this kind of formula we have seen. So, this is basically kind of powering

a number powering a matrix, but this matrix is a constant matrix. So, once you have a

constant matrix. So, this is some sort of A to the power n, but A is a 2 by 2 matrix; just 2

by 2 matrix. So, it is kind of same as powering a number. So, it is basically we have the

divide and conquer formula for this; this is basically A to the power n by 2 into A to the



power n by 2 if n is even otherwise A to the power n minus 1 by 2 into A to the power n

by 2 into A; if n is odd.

So, this is the divide and conquer steps. So, we have a problem of size n we reduce this

problem into sub problems of lesser size and then what is the recurrence; recurrence is

basically T n is equal to. So, only sub problem T n by 2 last theta of 1. So, this will give

us theta of log n. So, this we have seen in the divide and conquer technique class, but if

we use the DP we can solve it using. So, DP is a general technique where we can reduce

a exponential time algorithm to a polynomial time algorithm. So, that we will use for

many,  many, many  problem  many  optimization  problem  can  be  reduced  in  the  DP

technique.

So,  in  the  next  class,  we will  discuss  another  problem which  is  called  shortest  path

problem and we will see how we can use the dynamic programming approach to finding

the single source shortest path.

Thank you.


