
An Introduction to Algorithms
Prof. Sourav Mukhopadhyay
Department of Mathematics

Indian Institute of Technology, Kharagpur

Lecture - 53
Augmented Disjoint Set Data Structure

So we are talking about union operation, how we can perform the how what how we can

do the argumentation in the w connected linguist, we have seen the we are going to have

a we are going to add a pointer from each element to the representative element that is

the first element, because this w connected linguist and our first element is the

representative element.

(Refer Slide Time: 00:34)

So, we are going to have. So, now, we are talking about the union operation. So, the

union of 2 set union of x y. So, basically a S x. So, basically you have two sets S x and y

belongs to S y, now we want to have the union of these two sets. So, that you want to do.

So, this is set S x and this is set S y, S is here y is somewhere here in any one of this.

So, for the union what we are doing we are just. So, we are doing the union. So, union is

basically S x union S y.

(Refer Slide Time: 01:23)

So, for that we are just adding this. So, this last pointer we are just adding this, and then

this pointer also we have to change. So, this was the now this first element is the

representative for this also, all this nodes. So, this we are going to change now so for this

nodes also all this nodes having the representative element S1. So, this is the operation

you are performing.

So, this is the union operation. So, how long time it is taking. So, this is the bigger set.

So, now, the bigger set if it is order of n, then we are just taking theta of n times, because

everybody has to change the pointer because this is the bigger set say now so what is the

idea? Idea is to so, instead of merging this with this if we merge that does not matter if

we merge this with this. So, that is the trick one. So, we merge the molar set into the

bigger set. So, that is the idea of trick one.

So, then I can save it sometime because this is if this size is n and I need this size is some

constant then hardly we are changing the pointer of this side. So, that is the idea. So,

instead of this what we do the. So, this is our. So, this is our S y. So, everybody was

pointing here in S y now this was pointing here now we are merging this set with this set.

So, this is the at the end. So, this is let us try it again. So, instead of merging S x with S y

we just going to merge.

(Refer Slide Time: 03:26)

So, this is our union now. So, this is x 1 sorry this is now y 1. So, y 2 y 3 and now we are

merging this, this is the smaller set x 1 x 2 now all this y here this was S y and now this

was pointing here and it pointing itself now we have a connection over here and this all

these are now pointing to here. So, this is the trick is we want to merge this smaller set

with the larger set. So, that way if this size of this constant, but in the worst case it is

order of n, but we will do the amortize analysis on this and we will see this operation we

take in login time.

So, this is the idea of merging the smaller set with the bigger set. So, now, the question is

how to get the smaller set. So, the idea is to. So, this is the trick one, if trick one we

apply on.

(Refer Slide Time: 05:13)

So, trick one. So, that is smaller set smaller into larger. So, this idea this type of trick we

will use lot of other places also. So, the idea is to concatenate. So, we are concatenating

two list. So, concatenate smaller least on to larger least, on to the end of the larger list.

So, that is the idea. So, we are just because the earlier we are doing S is y we are

concatenate with this, but is smaller. So, now, we after applying the trick we are going to

use the S is smaller. So, we are going to concatenate S in at the end of y list. So, that is

the idea.

Now, the question is how we can decide which list is smaller and which list is larger,

then we need to try get the length of the list. So, again if you have to calculate the length

then you have to travels the list. So, that will take again linear time. So, to save that you

have to do again the argumentation. We augment the least to store the size of the list to

store that is called weight to store its weights weight means number of elements this is

the number of elements. So, this is the new augmentation we have to give. So, we are

going to store the e on each element we are going to or in the beginning because we

anyway we have access to the representative element. So, there we can store the size of

the list. So, we row. So, suppose we have given this is a least this is a least and every

pointer pointing here. So, we have given a x, now we can reach here somehow if we can

store the weight of weight of the list. So, this is S i or this x i. So, then we came to know

which one is larger and which one is smaller then we can apply this trick ok.

So, if we have apply this trick, then what is the time for doing this union because. So, we

are just not bothering about the find operation because find operation augmentation we

did and we can solve it constant time. So, we are all the concern here is now the union

operation. So, how much time it will take for union.

(Refer Slide Time: 08:39)

So, union cost is basically theta of length of the smaller list or weight of the smallest

smaller list length of smaller list. So, now, we have to go for amortize analysis to show

that average cost is login. So, for that we have to do the amortize analysis. So, let us. So,

this is the without amortize analysis this is that. So, now, we have to do the amortize

analysis.

 (Refer Slide Time: 09:38)

So, for that let us just denote some. So, let n be the n be the overall number of element.

So, total number of elements. So, these are coming by say make sets. So, every time we

are making set and doing the union and we are so, overall this is the total number of

order of n times you are doing the make set. So, this is this is basically equivalently

number of make set operation. So, that is how we get the elements nah. Once we make

set we get a single term set then we union. So, this is the way we got the elements. So,

this is the number of make set operation, this is the way how we get the sets. So, m is the

total number of operation and f is denoted by the number of find operation. So, number

of find set operation. So, this we will these are the notations will use in our time

complexity in our amortization analysis. So, now, we are going to prove theorem in a

amortize sense, that the cost of all unions because worried we are worried about union

for this augmentations is order of n login, there are n elements overall. So, if cost is order

of n login in a amortize sense, then the average cost is there are n element average cost is

login. So, that way we are going to prove this.

So, let us rove this theorem, the cost of total cost of union operation is n login.

(Refer Slide Time: 12:19)

So, let us just state this theorem. So, the total cost of unions operation is order of n login.

So, how to prove this? So, this is in the amortize sense. So, we basically we choose x and

we monitor x we monitor an element x, we look at an element x we monitor x and it sets

and set S x containing x. So, we will see how many times it will getting change and what

is the happening with this. So, that is up our interest and there are n element. So, you can

just multiply with that ok.

So, we want to see the cost for this union overall cost for this union for this particular

element x, and there are n elements you multiply that. So, if we can so that for this x we

are just doing the how many times? We are just doing the login times then overall we are

doing n login time. So, that is our goal. So, how to prove. So, that is basically so after

initial. So, how we are getting x? So, after initial after initial make set, we got x by doing

the make set operation. So, that time weight of x is basically 1 because that is the single

term element, and we in the union operation we unit x we merge x with some other y. So,

each time S x the set which containing x is united. So, well we are doing the union

operation with S y united with the set S y. So, we are just doing union of x and y. So, we

are doing this. So, now, our trick is we are going to merge the smaller set to larger set

now if this weight of. So, if the ac is S x is smaller set then only we are going to change

all the element of S x to this. So, that is the idea so; that means, if the weight of S y is

greater than weight of S x. Then S x is smaller than S x is going to merge with S y and

then we are changing all the pointers of S x to the representative pointer of S x all the

elements for that; and then we are we are paying some we pay one to update. So, there if

this if S x comma then we pay one say one dollar to update rep of S x, because then we

are going to because this is the smaller set then rep of S x so that means, and then the

weight of S x, then S x and S y will be replace by the union then the weight of the S x.

So, then the weight of S x will be how much? The double then the weight of S x will

increase by at least double because the weight of a S x weight of S y is greater than that.

So, weight of the new set will be the weight of this plus weight of this.

Now,. So, it will be double. So, that is why this two is coming that login is coming. So,

that is the reason this login is coming. So, this is basically increase increasing the

because the weight is increasing by the weight of S y, which is basically greater than S x

so that means, weight is becoming double. So, that is the reason this login is coming

login base 2. And if S x is more if S y is united with S x then we are not paying anything.

So, then the how many times we are doubling? Then we are doubling just login time.

(Refer Slide Time: 18:13)

So, we are just making double is less than login base 2 times. So, this will the proof so;

that means, that is why the login is coming because it is doubling. So, this is the proof.

So, the total number of operation is. So, this is the one first trick.

Now, in order to bring the second trick, this analysis is amortize sense. So, amortize

sense our total time complexity is the total union operation is L login, now if we have.

So, we have taken the one x for that x it is login. So, there are n elements. So, it is n

login. So, this is the total cost in a amortize sense. So, now, average cost is login, but for

few cases it is more like in a, but amortize sense it is average cost is login . So, now, we

will discuss the second trick trick two for that we need to bring the data structure which

is tree.

(Refer Slide Time: 19:35)

So, let us again bring the tree representation representing sets as tree. So, here we are not

dealing with binary tree or it is not a balanced tree. So, suppose we have a set x, x 1 x 2 x

k, now we store this into a tree and these trees unordered because our sets are unordered

collections, unordered unbalanced here we are not bothering about balance ok.

So, and not necessarily a binary not a binary I mean it could be any tree, I am in the

children it could number of children could be more than 2. It could be 3 4 it could be 2

also it could be null. So, it is not necessarily binary tree it could be turnery it could be I

mean it is not necessarily binary tree and the parent is basically the root, root of the tree

is the representative element rep of S i. So, basically you have a tree. So, let us take an

example. So, suppose we have a set say x 1 x 2 dot dot dot x 6.

(Refer Slide Time: 21:18)

So, let us draw a tree x 1, x 4, x 3, x 2, x 5, x 6. So, this is not a binary tree and this is

this is not a balanced tree also. So, we do not care about that.

So, now we only have we do not have child pointer we only have parent pointer and this

is the root rep of a S i is this one the root of the tree. So, we only have the parent pointer

of each node. So, we do not care about the child because no need to care about the child

pointer. So, this is the root. So, you only have the parent pointers. So, why we need

parent pointer because to find the set? So, we have to return this root element. So, two if

we have parent pointer. So, suppose you want to this is our x say, suppose we want to do

the find set of x find. So, what we do? We look at the parent pointer this way we reach to

the root and we written x 1. So, that will take height of the depth of x basically.

 (Refer Slide Time: 23:03)

Now, this is our data structure, now how to perform this operation like make set make set

is easy just we make a these tree I mean a single turn tree that is it, and the find set is this

one an union. So, find set will take how much time? Find set will take order of depth of

x, this is the find set cost find set will take order of depth of x. Now what about the

union? A union suppose we have a another set y.

(Refer Slide Time: 23:41)

Y 1 say y. So, we have another set S y, y 1, y 2, y 5 say. So, y 1, y 4 y this is another tree

we have y 2, y 5. So, now, this tree is also like this, we have all the parent pointers now

how to find set.

So, we can add this root to any one of this node, that will do because if we add this root

to any one of this node, then the we can just from this we go to that node and then we

visit to the root or else we can just add this two here. So, this way we can do. So, this is

the union operation we are doing. So, now, the question is if we adopt the trick one here.

so; that means, if we just add the smaller set to the larger set then how it is helping us.

(Refer Slide Time: 25:11)

So, that is the next discussion we are going to do this is called. This set is completely

unordered. So, this is the trick one adopted to trees. So, we adopted to trees for. So, that

means if we just find the smaller is merging with larger. So, if we can find the smaller

tree then we can add it to the larger set then the find will take the same time as find of x

and height of the tree will increase because height of the tree will not increase because

we are having smaller set we are adding merging with the larger set. So, height will

remains same.

So, this is the trick one, now let us talk about trick 2. So, that is the trick 2 which is also

referred as path compression. So, what it is telling? Now this is telling all about the find

now. So, when we perform a find operation say we are performing the find operation on

this set say x 5 or say yeah x 5. So, what say we are no we have say we are performing

the find set operation on say y 2. See if you perform the find set operation on y 2 what

we go to do we go to the parent of this, then we go to this, then we go to this. Now if we

do this now. So, once we got the parent of this, we have parent pointer from here to here

this is the new augmentation we are doing. So, that if the next time we again search for

the find y 2 then we will get it directly. So, this is a path not only this. So, we are going

to add the parent pointer for each of this node in this path.

So, that is the idea of trick two. So, that is called compression path compression. So, let

us write that. So, when we execute a fine set of a node, fine set operation and walk of a

path P to the root. So, we know the representative. So, so we are going to change the

representative element of each node in that path. So, if a node Y J belongs to this path P

then we are going to change the rep of Y J to be x 1. So, we are going to have a. So,

direct pointer to this. So, direct pointer to this all the elements in that path. So, this is

called trick 2.

So, this is the operation we are doing. So, this is basically called compression path

compression. So, instead of only one element we are just compressing the path I mean

we are taking all the node, representative element of all the node, we are changing to this

root. So, this we can have a theorem to. So, this is in amortize sense the total cost is. So,

let us just write the theorem we then have time to prove it just will state the theorem. So,

this theorem is telling.

(Refer Slide Time: 29:22)

The total cost of find set is order of n login amortize sense.

So, this is the amortize analysis. So, there are m times we are doing this operations. So,

now, the on an average it is login. So, this proof we are not doing, now we are do not

have time. So, now, this is if we only applied trick 2. Now if we combined apply trick

one and trick one and trick two. So, that is the combination of trick 1 and 2. So, this is

more interesting if we apply both the tricks then this is the general case, this is the

another theorem in general if we apply both the trick the total cost is order of m. So, this

we this proof is there in the code member and that going to do this book.

So, this is the again in amortize sense. So, this is the amortize analysis we do we did for

our data structure augmentation and we apply the two trick one is the we are going to

merge the smallers with the larger we are or we are going to combined the smaller with

the larger and the second one is path compression. So, we are going to change each

pointer of this representative element of each pointer of this set note on this path to the

root.

Thank you.

