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Lecture - 44
Example Of Dijktra

We are talking about Dijktra’s algorithm. So, we want to work out the Dijktra’s algorithm

on this given input.
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So, just to recap in the Dijktra’s algorithm what we are doing we are starting with the

vertex s that is also a part of the input suppose this is the graph and suppose A is our s ok,

so this is our s say starting vertex this is also part of the input. So, the input will be a

vertex which we have to go; this  is single source shortest  path problem. So, given a

vertex s we have to find out the shortest path from all the vertices, ok.

So,  basically  what  we  are  doing  we  are  just  maintaining  this  thing,  we  are  putting

everything in the Q. So, our Q is basically A B C D E. So, we are putting everything into

the Q. And we are putting the degree of this  as this  is  the initialization  step of this

Dijktra’s algorithm if you recall. So, you we are just putting the degree of s as 0 and for

all  other  vertices  v minus s  we are  putting  degree  to  a  infinity,  because if  this  is  a

initialization step nothing as explore. And this Q this is the basically all the vertices. So,



we are putting all the vertices s is empty capital S this m p initially and we are putting all

other vertices in Q which is the priority Q, ok.

So, basically the idea is we just capture one; each time we just capture one vertex in s as

we update the distain estimate of that vertex which are adjacent to that vertex which have

recently captured. Now, what we do we do the extract minimum. So, we do the extract

minimum u use the vertex. So, extract minimum from the Q. Now, everything is infinity

accept this. So, this will be our u and this once we extract minimum will put it in S. So, S

will be S union. So, S will be A because it was empty. So, this is our u. Now once we

have u then. So, we look at all the vertices which are adjacent to u. So, this is one vertex

which is adjacent to u. So, this is v vertex, so all the degree was infinity. So, we look at

the vertex which are adjacent to u.

Now, its degree was infinity, now we have d u d is basically 0; so 0 plus this w u comma

v which is 10. So, that is basically 0 plus 10 is 10. So, 10 is greater than infinity. So, we

have to decrease the key we have to change the degree, so these become 10. Now this

become 10 now. Similarly now this is v which is another adjacency vertex of u. Now it

was having a degree infinity, now we have a path we can go from s to s with the cost 0

then we can take 3. So, this degree will be now. So, this is the relaxation we are doing;

we are relaxing the vertex. So, if you do this relaxation those c became now 3.

And then they are all the two adjacency vertex of this and these two will be copied no

change over here. So, you can just this one copy this one ok. So, now this is the first

round then again we have to check whether Q is empty Q is not empty still they are they

are in the Q. So, Q means d minus a S capital S. So, they are in the q, so this two are

infinity and this is 3. Now you have to extract minimum again. So, now, if we extract

minimum, so then this 3 is the minimum because now all are 10 3 infinity; infinity 3 is

the minimum. So, this is our u now. So, u is basically extract minimum from the Q.

Now this 3 is the minimum. So, now, this u is now added so u is basically c so c is added

in s. Now, this is our u, now we check all the adjacency vertex of this. So, this is one of

the adjacency vertex this is v now this is this is having a degree infinity now we have a

path from s to this node how. So, this d u is basically 3. So, that is same as delta of s

comma v. That means, once a vertex is in s we you are capturing is vertex. So, once u in



s that means, d v is basically  delta of s comma u. So, this is the correctness of this

theorem Dijktra’s theorem

So, once we capture a vertex in s then and this correctness is coming from triangular

inequality. So, once we capture a vertex in capital S for that vertex the delta of the degree

is basically becoming the shortest path from s to that vertex. So, now, this is 3. So, now,

from s to v what we can do; we can go from s to u with a cost 3 then we can take this

direct path, so 3 plus 2 5 which is greater than infinity. So, we change this to 5. So, e is

now became 5. Now it is another this is also v, so it was infinity now we have 3 plus 8

11; so is 11. So, d is 11. And now this is another vertex which is adjacent to this now this

is our v now it was having a degree 10. That means there was a path from s to this vertex

with a cost 10.

Now, we have a new path from s to this vertex how; we can go from s to u with a cost 3

then we can take this direct path 4; so 3 plus 4 7. Now, 7 is greater than 3. So, this path is

better, so you must relax this h. So, you must relax this h. So, this will be the now 7. So,

this 10 now became 7. So, this there is no other adjacency vertex of u. So, what now we

do what extract the next minimum, next minimum is 3 a 5. So, 5 is basically this one, so

this is our u now, we capture this in s. Now, this is our u, now what is the v? V is this one

there is only one adjacency vertex of this, this is v. So, what was the degree of v? Degree

of v was 11.

That means there was a path there is a path from s to v with a cost 11. Now we have a

new path what is that path. So, we can go from s to u and this cost is basically d u which

is  basically  5,  because  this  has  been added in s  recently.  That  means,  the  degree  is

becoming the delta for this vertex. So, this is d u and then we can take a direct path that

is basically 9. So, this cost is 14. So, we come from s to this with this shortest path, then

we take this direct h which is 9 so 5 plus 9 14 which is not good as 11. So, we will not

relax this vertex, because the earlier path is better than the path currently now we are

having. So, we are not going to relax that vertex. So, this we remain 11.

So, this is the situation. So, this will be the infinity infinity and this will remain 11 and

this will remain 7. Now we extract the next minimum, next minimum is 7. So, this is our

u. So, this is 7 and this v we will be captured in s. Now, this is our u which is 7. Now,

delta of u is basically 7 which is basically d of v is 7 delta of s comma u. That means,



from s we have a path and that is a shortest path we have a path from s to u with a cost 7.

So,  that  path  is  basically  shortest  path  because  this  u  is  recently  captured  in  s.  So,

whatever the vertex we are taking this is for that degree will become the shortest path

weight from s to that vertex, ok.

So, now let us consider all the adjacency vertices of this node. So, this is one adjacency

vertex. So, this is now v, so if this is v then the degree of v was 11 now we have a new

path we can go from s to u somewhere and that path is basically 7 cost. Then we can take

this direct path 9 and that is better than 11. So, new path is better than 11. So, you have to

relax this h. So, we have to change this to 7; sorry 9 7 plus 2 9. So, this 11 now became

9.

And is there any other adjacency vertex of this? Here this is one adjacency vertex of this,

but this is already captured in s, but again we can cross verify because we are getting a

another path from this is also a v which is adjacency vertex of this, now we are getting

another path from s to v like we go to s to u some way that will cost of 7 plus this one; so

8. But we already have a path we cost 3 which is 8 is not better than 3. So, that is a cross

verify that is it working fine. So, that is it.

So, this is the two vertices which will adjacent to this then we again call this extract min

and this is the vertex which are going to be add in D s. So, that is it. And this Q is empty

now because  all  the  vertices  are  now deleted  from this  Q  priority  Q  and  has  been

captured in s. So, now, these are basically deltas.  So, deltas of this box are basically

giving us the delta. So, delta of s is basically a delta of a comma a 0 delta of a comma b-

b is basically 7, delta of a comma c is basically 3, delta of a comma d is basically 9, and

delta of a comma e is basically 5. So, these are basically degree of those vertices. So, this

is the Dijktra’s algorithm execution.

So,  here  we  are  assuming  no negative  cycle  we cannot  Dijktra’s  cannot  handle  the

negative cycle. So, that is why you strictly follow there will be no negative weight h in

order  to  avoid  the  negative  cycle.  So,  just  let  us  go  for  a  quick  correctness  of  this

theorem. So, the idea is we just grow this capital S, we capture each step, we capture one

vertex in capital S which distain estimate is minimum. So, distain estimate from small s

to that vertex is minimum and that is the greedy choice. So, that is why this algorithm is

a greedy algorithm ok.



So, correctness is basically telling us. So, there is a two theorem for this correctness. So,

it is telling us I mean. So, we can just write in one theorem. So, Dijktra’s algorithm

terminates, so when you finish this execution then we d v is equal to delta of s comma v

for all v. So, that is what we are expecting, because when we capture a vertex in s. So,

how to prove we keep the outline of this proof? So, what basically when we execute

when we finish the execution of this algorithm then the degree is becoming this. So, to

prove this- we can just proof this. So, if you recall the Dijktra’s algorithm what we are

doing we are maintaining a set s. So, first of all we are initializing each degree by; so we

are initializing degree of s is 0 and degree of all other vertex this is the initiation step- all

are vertex from v comma s v comma s we put the degree to be infinity, ok

Now, in the first step the s capital  S is becoming I mean we have just capturing the

smallest in capital S because. Now, small s this degree is 0. Now, what is the delta of s

comma s? Delta of s comma s is 0 why, because there is no negative cycle. That means,

from s to s what is the best for we can go from a to s. If you remain that s because there

is no other way if you start from s if you there is no other way you can come back to s

with less than 0, because there is no negative cycle. If there is negative cycle then there

could be a chance. There we can have this hope in this path and then we can just do that.

So, since there is no negative cycle that means, there will be no question of reducing this

to further 0. That means, this s will be in s and the degree of this is 0. So, for s we are we

are fine. So, d of delta of s comma s is basically 0, ok.



Now what we are doing? We are doing here. So, we have s at capital S which is small s

should be there, now we have a set v minus s. Now there are some vertices over here,

now, among these vertices. So, these are the degree of these vertices, this is u 1, u 2

suppose u k I mean there are say. Now we are what we are doing o once we capture a

vertex in u then we take a direct we take a v over here which is basically,  so this is

basically delta of. So, what is the degree of v? So, degree of v is basically degree of u

plus delta of u comma v. So, initially this is s basically u is s,ok.

So, now if we choose the minimum among this, this will be become. So this is basically,

if you take s to this vertex any other path, any other path from s to that vertex that will be

the less than that. So, my claim is delta of v must be greater than equal to sorry d of v

must be greater than equal to delta of s comma v. So, how to prove this? So, to prove this

what we do? So, this is the shortest path from s to v, now this is one path from s to u then

u to this. So, this is the weight of that path. Now so delta must be less than equal to that.

So,  that  is  the  triangular  inequality  we  are  using.  If  you  remember  the  triangular

inequality if we have two vertex u v and if we have another vertex h then if we have a

shortest path from s to, so this is basically delta of u comma v and delta of u comma x

and this is basically delta of x comma v.

Now, this is basically s, u is basically s now this is basically say s u is initially this u is s

because initially you are capturing s in that set. So now, this is basically the shortest path

from s to s, because this is degree which is 0 and this is basically the direct h from s to

that vertex or any; sorry we are not talking about s anyway let us take any other vertex.

So, this suppose this is two for we can use by index; suppose this is true for up to k now

in the k plus one step we are capturing one node and we have to prove that is true for k

plus one step.

So, if we assume this is true for up to k step so that is the degree. So, this is basically

delta of s comma u, because this is the assumption we are making. So, this is basically

delta of sorry this is d now this is d. So, delta of s comma u by the index of this is and

this is the direct path. So, this is the shortest path from u to v. So, this is basically must

be this, this must be less than the shortest path the shortest path must be less than this

now if this happened to be the minimum which we already have this has to be there. So,

that is by the, because this is the delta of u comma v. So, this is delta of s comma s. Then



this means this must be greater than equal to delta of s comma v. So, this is coming from

this triangular inequality.

So, when this is true if the s is in if the v is in capital S then the equality will occur. Any

way  this  is  the  correctness  of  this  theorem  and  this  is  coming  from  the  triangular

inequality. And we have already seen the time complexity for Dijktra’s algorithm which

is basically same as spins algorithm. So, the analysis part of Dijktra’s is same as spins

algorithm.

So, now will talk about another algorithm which is basically can handle the negative

weight cycle which is called Bellman-Ford algorithm.

(Refer Slide Time: 23:18)

So,  before  going  to  the  Bellman-Ford  algorithm  let  us  recap  the  problem  with  the

negative weight cycle. So, for we have seen the Dijktra’s algorithm where in Dijktra’s

algorithm  what  we  have;  so  this  single  source  shortest  path  problem  single  source

shortest path.

That means, we have given a input is a graph, we pay vertex as a source a graph a

directed graph g V comma E and a vertex which is source vertex and the output will be

the delta  of s comma v for all  v belongs to capital  V. And also we have the weight

function  E  to  R  plus.  So,  here  we  are  not  allowing  the  negative  weight  h  because

Dijktra’s cannot handle the negative cycle; so no negative cycles.



So,  we  have  to  guarantee  that  in  order  to  run  the  Dijktra’s  algorithm  we  have  to

guarantee that there is no negative cycle to guarantee that we are taking this side we are

taking no negative weight h. So, that that will ensure that there will be no negative cycle.

So, what is the problem with negative cycle; if we have a negative cycle then all though

if there is a path from u to v there may not have a shortest path.

(Refer Slide Time: 25:22)

If we have vertex u to v, so this is say v 0, v 1, v 2 say v l v k and if there is a negative

cycle over here, ok; which will not the case in Dijktra’s algorithm because there is no

negative weightage, but in general we can have a negative weightage so that may create

a negative cycle. So, if there is a negative cycle then there will be no shortest path.

So, in that case delta of s comma v will be infinity, because if we cannot claim that there

is a shortest path because if we claim this is a shortest path then will have a analogue

loop in this cycle. So, this will reduce further. So, this way we can keep on reducing

further. So, this way we cannot have a shortest path from u to v if there is a negative

weight cycle.

So, the algorithm which will discuss in the next class is called Bellman-Ford algorithm.

And that Bellman-Ford algorithm can handle the negative weight cycle. So, for Bellman-

Ford algorithm or graphics any graph with the any h weight. So, we are allowing the

negative weightage also, so there is there will be chances of negative cycle. So, Bellman-

Ford can detect the negative cycle. If there is a negative cycle there will be no shortest



path, but Dijktra’s cannot say that there is no shortest path- since there is negative cycle

Dijktra’s cannot say that, because Dijktra’s cannot handle the negative cycle. So, that is

why  we  take  the  assumption  the  weights  are  positive.  So,  to  in  order  to  avoid  the

negative cycle, but in Bellman-Ford it is a general algorithm. So, it is more general than

Dijktra’s. So, there we are allowing the negative weight h, so there could be a negative

cycle. So, Bellman-Ford should able to tell us that there is no shortest path because of

negative cycle.

Any way we will discuss this Bellman-Ford algorithm in a next class.

Thank you.


