
An Introduction to Algorithms
Prof. Sourav Mukhopadhyay
Department of Mathematics

Indian Institute of Technology, Kharagpur

Lecture – 04
Recurrence For Merge Sort

 (Refer Slide Time: 00:25)

So we talk about the time complexity of the merge sort or the analysis of the merge sort.

So, just to recap in a merge sort what we are doing we have this we have a array of size n

and then we if n is 1 we return we are done otherwise else we recursively sort this sort

this sub arrays 1 to n by n by 2 and a n by 2 plus 1 to n recursively by calling the same

function merge sort and then we call the merge.
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So, basically we have this array now we partition into 2 part this is n by 2 this is n by 2 I

mean if n is even otherwise it will be lower in a upper in a we sort this sub array this sub

array recursively and then once we got the 2 sorted sub array once we got 2 sorted sub

array this is sorted this is sorted we call merge; merge function; merge sub routine to get

a  sorted  array.  So,  for  merge  what  we  are  doing  we  are  taking  the  minimum.  So,

minimum will be here in this sub array minimum will be here. So, for this merge we

need to take help of extra array. So, this is not in place sorting algorithm for this merge

sub routine we need to take a help of a extra array.

If we want this merge to be in linear time. So, why linear we will come to that. So, we

compare these 2 whichever is the minimum we will put it here and then we point to the

next one like this we compare like this. So, this is basically time complexity for this is

order of n this is linear time because we are just reading this every time we are returning

we are outputting 1-1 element. So, there are n element total n by 2 n by 2. So, basically

we are spending linear time for that.

So, and, but this for this merge we need to take help of a extra array to store this element

otherwise we cannot store here in a linear time not possible to store this in a linear time

the merge can be done in the same array that is not possible. So, so this is not a in place

sort. So, this is not in place sorting algorithm; algorithm not a in place sorting algorithm.

So, this you must. So, this is the thing.



Now, now we want to know the time complexity for this suppose T n is the time to sort n

element now how much time we are spending here; here we are spending theta 1 time

now this is theta of n now how much time we are spending here. So, we have a 2 call 2

call of a same size n by 2 n by 2 of the same merge. So, it will be basically 2 T n by 2.

So, the T n will be sum of this.
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So, the T n will be basically theta 1 plus 2 T n by 2 plus theta of n.

So, this theta of n and theta all will combine. So, this is basically 2 T n by 2 plus theta of

n. So, this is basically the time complex this is basically recurrence related to this is the

function related to time complexity. So, this is function is called recurrence function.
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So, this is called recurrence of this algorithm. So, we got this recurrence. So, basically

we got T n is equal to 2 T n by 2 plus theta of n or some c of n theta of n.

So, this is what is called recurrence or recurrence relation now the question is how to

solve this recurrence we need to get the solution we are not happy with this type of

expression we want to know whether merge sort is a order of n square algorithm or order

of n log n algorithm or order of n cube algorithm or order of n algorithm. So, that is of

our interest we do not; so, we do not happy with this recurrence we need to have the

solution of this recurrence. So, we need to solve this recurrence. So, now, the question is

how to get the solution of this recurrence.

So, to solve this recurrence we can use what is called recursive (Refer Time: 05:41)

effort. So, basically you are going to solve this like theta n we can get just c of n some

constant n.
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So, basically what this is basically we have a array of size n we divide the array into 2

sub arrays and then we call the merge and then we recursively sort these 2 sub array then

we call merge to get the solution of the whole array.

So, this is our T n. So, T n is basically can be write as c n T n by 2 T n by 2. So, basically

we have a problem of size n this is what is called divide and conquer technique. So, this

is a problem of size n we divide the problem into 2 sub problems and then we recursively

solve this sub problems this sub problems and this will again take T of n by 2 T of n by 2

and then once we have the solution of this 2 sub problems we merge this with a cost of c

n that is called merge in the merge sort. So, that is the c n.

So, this total time is basically sum of this now again this is a problems physically this is a

sub problems, but this is again a problems of size n by 2 again we can further divide it

into the sub problems sub problems. So, c n; so, this will be again can be c n by 2 T n by

4 T n by 4 similarly c n by 2 T n by 4 T n by 4 because this sub problems of size n by 2

now again we further divide this when we call the merge sort on this sub problems on the

sub array on this sub array on the sub array we again call the merge sort. So, it will

divide into sub array. So, like this we continue until we reach to the size one array then

we merge come back and like this.

So, again we further divide this into c n by 4 T n by 8 T n by 8 this is the merge cost c n

by 4 T n by 8 T n by 8 this is c n by 4 T n by 8 T n by 8 this is basically c n by 4 T n by 8



T n by eight. So, this way we will continue and the; our time complexity is sum of all

this. So, this way we will continue and we stop when it will reach to the when n will be n

because if it is 1 then we cannot further divide into sub problems.
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So, we each branch will stop. So, this is c n by 4 all will be c n by 4 c n by sorry, c n by 8

c n by 8 c n by 8 c n by 8 c n by 8 c n by 8 c n by 8 c n by 8 like this and all branch will

stop at T 1 T 1 T 1 like this all branch will stop at T 1 because also we reach to the T 1;

that means, there is the size of the problems that sub problems is of size 1 then we cannot

reduce it further we must stop their and that T 1 will take theta of 1 time because we

have to. So, if we have to sort all the 1 element if we have to solve only a array of 1 that

is already sorted. So, theta of 1, so, all the T 1 is basically theta of 1 because if our

problems size is 1 then nothing to be done it is already solved.

So, this is basically all the branches will come like this and the all the branches will stop

this now our time complexity is the sum of this nodes basically. So, now, the question is

how to get the sum of these nodes. So, T n is basically sum of all this. So, how to get the

sum we can get the sum level wise we can get the sum of the levels and then the level of

the sum. So, if you do that what is the sum of this level c n what is the sum at this level c

n what is the sum at this level c n if we just see it is all the sum is c n. So, sum at all level

is c n.



Now, what is the height of the tree? So, now, what is the sum of this level c of n into h h

is the height of the tree now what is this height of the tree now how to get height of the

tree if you observe here this is n by 2 this is n by 2 square. So, if the height is h then this

is n by 2 cube like this it is coming down. So, if the height is h then n by 2 to the power h

is basically coming to be 1 we stop at T 1.
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So, from here we can say 2 to the power h is n. So, h is log n base 2. So, height is height

is log n.

So, this is basically c n log n. So, this is basically solution of this is n log n. So, this is

the. So, this is the time complexity for merge sort. So, this is what is called recursive

tree.  So,  this  method is  called recursive tree method this is  called recurrence tree or

recursive tree.
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So, recurrence tree or recursive tree; so, this is one way we can try to get the solution

there are some method to solve the recurrence what is called substitution method that is

the inductive method in the method of induction we prove that because see in this here

what is the guarantee that at i th level it will be c n we are just using our incentives on

that it is going like c n c n c n. So, at the 10 levels also it will be c n.

But again what is the guarantee that it at the 10 level it is c n. So, we need a proof that

proof we are not doing. So, that is why this method is not a full prove method. So, this

method is. So, we have a full prove method which is called substitution method to solve

the recurrence where we will  see by the method of induction we can prove that  our

solution is this. So, this is the merge sort time complexity. So, now, what is what is worst

case for merge sort what is the best case what is the average case if we want to do.

So, can you tell me the worst case of the merge sort or what is the best case of the merge

sort what is the best case of the merge sort or what is the. So, what is the best case of the

merge sort?
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So, you want to do the type of analysis of merge sort. So, like in insertion sort we will

see that if the input is sorted it is best case, but is this; the same is here. So, if the input is

sorted in the merge sort we need make any difference if the input is are equal element

will it make any difference whatever input may be we are not caring we are just going to

the middle we are dividing the array into 2 sub array we sort them we sort them once we

get the solution then we merge them.

So, you we really does not bother about the input we are just going to the middle of the

array we are dividing it we are sorting this part we are sorting this part then we have

merging that is it. So, it is always recurrence will be like this for any input 2 n by 2 plus

theta one always for all type of analysis this is the always the recurrence will be like this.

So, the solution is always this; this is for all the cases worst case there is because all the

cases are same worst case best case and average case also because we really does not

bother about the input pattern we are just divide it the array into 2 sub arrays then we sort

this sub array recursively we sort this sub array recursively then we call the merge. So,

thus this will be the recurrence in any input for any input.

So, that is the case now we talk about so, but the this is this is a l log n time algorithm

whereas, worst case where as the insertion sort is order of n square algorithm so, but

whichever is the better insertion sort or the merge sort insertion that is a extra advantage

in the sense it is a in place sort we do not need the extra array to sort it, but merge sort is



not in place for that merge we have a sorted array. So, this is this is sorted this is sorted

after calling the recursive call this is sorted.
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Now, this is now we will need to call merge. So, merge is merge sub routine. So, then we

need to take help of extra array.  So, where what we are doing we are taking the list

element of this compare the least 2 element whichever is the least 2 among this we are

outputting their then we have comparing the next least like this we are doing. So, this is

the merge sub routine. So, for that we need to and merge we want to do in linear time.

So, for that we need to we take help of a extra auxiliary array of size n otherwise we

cannot make it in linear time if we have to handle this in the same given array this is our

a  array.  So,  this  has  to  be  clear.  So,  that  is  why merge  sort  is  not  in  place  sorting

algorithm.

So, now we will take another example of recurrence where we will use the recursive tree

method to get the solution. So, that is basically.
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So, let us have another recurrence like suppose we have a recurrence like this T n is

equal to T n by 4 plus T n by 2 plus n square suppose we have this recurrence and we

want to. So, I found we can get this recurrence again this can be generated by a algorithm

which is again divide and conquer in nature. So, we have a problems of size n we divide

the problems into 2 sub problems and here they are not equal size one sub problems size

is n by 4 another sun problems size is n by 2 then once you have the solution of this 2

sub problems we combine this 2 sub problems with a cost of order of n square and this is

basically combine step or merge step.

So, this type of recurrence we can get from such a divide and conquer now the question

is how to solve this recurrence. So, we will again use the recursive tree method to solve

this. So, T n is basically. So, we can write this as this T n by 2 T n by 4 like this then

again this is a problems of size n by 2 and then again we can divide sorry this is say n by

4 and this is n by 2. So, again this is a problem of size n by 4. So, we can again divide

into sub problems.
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So, then this is basically n square and this will be basically c. So, now, our size is n by

four. So, we put the same recurrence we are assuming the in the subsequence steps also

we are having the same recurrence.

So, it will be c oh; it do not have c here, we can put a c over here c is a constant if it is

theta of n square we can put c of n square, so, c of n by 4 square. So, that is basically n

by 4 square you can just write in this way then it will divide into this T of n by 16 and

then this is T of n by 8 and similarly here we can have. So, this is n by two. So, c of n by

2 square and this is again we put n is equal to n by 2, so, T of n by 8 T of n by 4.

So, basically here further we are dividing into sub problems; sub problems with the same

recurrence. So, then again we divide into sub sub problems. So, this is of size this is of

size n by 16. So, if we divide it into sub sub problems it will be T of n by 64 and this is T

of n by 32 and this will be again T of n by 32 and this will be again T of n by 16 and this

will be again T of n by 16 sorry, T of n by 32 and this is T of n by 16 and this is T of n by

16 and T of n by 8 and this will be c of that square c of this square c of this square c of

this square and we will continue. So, which branch will n first. So, this is going rapidly.

So, this will end. So, each of this branch will end with T 1.

So, each of this branch will end T 1. So, this will end first than this one. So, this will be

going little longer. So, everybody will end at the at the point T 1 everybody will end at

the point T 1 so, but this branch will end first because its going rapidly to this and this is



will be c of that square c of that square c of that square c of that square c of that square c

of that square c of that square like this.

So, every branch will be ending with T 1, T 1 is means theta 1 like this theta T 1 is theta

1. So, every branch is will be ending at theta 1. So, our time complexity is basically sum

of the all nodes, so, now, how to get the sum. So, we will get the sum level wise the;

what is this level sum.
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This is n square. So, what is this level sum. So, this is basically what 1 by 16 plus 1 by 4.

So, this is 16. So, 5 by 16. So, this is basically c of that. So, this is c c of 5 by 16 n square

ok

Now, if you just calculate this will be getting c of 5 by 16 square n square coming if we

are if we just we can verify this then this will be c of 5 by 16 n cube like this. So, this

way it will be coming. So, this way it will be coming now. So, again here we are using

our intuition what intuition that in case it like this. So, what is the at the i th level we are

thinking that it will be 5 by 16 to the power i, now what is that prove that proof is not we

are doing here. So, so either we have to proof that by method of induction or something

else then we can say this is a probable method so, but we are not doing we are just using

the intuition we are no presence to go up to this level after this, but we are using our

intuition it is going like this. So, it will go like this.



So, this is the way it is going. So, now, if the height of this is the h 1 and the height of the

bigger tree is h 2 then we can say this sum then we can say. So, up to h 1, so, h 1 is the

earlier ending the tree. So, up to h 1 it is bounding like this. So, up to h 1 it is a complete

binary tree and up to h 2 it is the complete. So, basically it is bounded by sum of this up

to h 1 left side and bounded by sum of that up to h 2 now we want to take the sum of this

term. So, what is the sum of this term and what is the height basically; what is h 1. So,

we want to get h 1 h 1 is basically; so, h 1 is basically what. So, this is 4 this is 4 square

this is like this, so, 4 16, so, 16 into 4, so, 4 4 plus 4 cube.
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So, basically n by 4 to the power h 1 is equal to 1. So, h 1 is equal to basically log n base

4 similarly here also this is basically 2. So, h 2 is basically log n base 2, but this again we

can make it into base 2.

So, log 2 base n. So, this is a constant. So, height is a order of log n. So, height is order

of log n. So, now, we need to take the sum of this and that will be the solution, so, how to

get the sum of this? So, basically, so, basically we have this sum. So, it is basically c c n

square into 1 plus 5 by 16 plus 5 by 16 square plus dot, dot, dot, so on.
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Now, this is a finite times, but if we want to make it infinite this would be less than and

now this is basically c of n square this is basically this series power series 1 plus x plus x

square like this.

Now, this is basically 1 by 1 minus x if x is less than 1. So, this is basically 1 by 1 minus

5 by 16. So, this is again a constant merge with this. So, this is basically theta of n square

this solution of this is theta of n square. So, this is basically theta of n square, but again

this is not a probable method because this recursive method we are not we are assuming

all level it is going like this. So, it will be 5 by 16 to the power i at the i level, but that

proof we are not doing.

So, but this is giving us a idea what could be the solution for the recurrence so, but in the

next class we will talk about probable method which is the substitution method where

will take help of the induction proof method proof method of induction and then we will

see that, but there we have to assume our guess we are given a solution we have given

the recurrence what we have assume the solution then we have to proof the solution, so,

that we will do in the next class.

Thank you.


