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Prim’s Algorithms

We talk about Prim’s algorithm to finding the minimum spanning tree.

(Refer Slide Time: 00:29)

So, this is a greedy approach, so let us talk about Hallmark for Greedy Algorithm. So, it

is telling us greedy choice property. So, a locally optimal choice is globally optimal ok.

So, this is the hallmark for greedy. So, it is telling us a locally optimal choice greedy

choice basically is globally optimal. So, we will just talk about. So, Prim’s algorithm is a

greedy algorithm; so Prim’s algorithm is based on this theorem which is basically greedy

choice or which is basically coming from this hallmark.
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So, this theorem is telling: let T be a MST of a graph G which is basically V comma E

and A is a subset of V, any subset of V. And suppose u v belongs to E is the list weight

edge connecting V; sorry A and A compliment V minus A. Then this theorem is telling

this u v must be in this minimum spanning tree. This theorem is telling this u v must be

in this minimum spanning tree. So, what is the meaning of this? Suppose do we have A S

edge, we have some vertices and this is the V minus A or A compliment this is the V

minus A. So, there are some bridge edges; bridge edge means the edge which is having

one vertex in a and another vertex in A compliment. So, there are we can called as bridge

edge.

So, among this bridge edge suppose this is the edge u v which is minimum among all this

bridge edge, then this theorem is telling this u v must be in the minimum spanning tree.

And we have to prove this theorem, but before the let us understand this theorem. So,

this is telling us this u v the bridge edge which is the minimum among all the bride

edges. And this edge must be in the minimum spanning tree.

So,  let  us  take  the  earlier  example  which  we  have  and you see  we will  prove  this

theorem.
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But before that and the Prim’s algorithm is based on this theorem. So, let us just draw the

graph we have in the last class we discuss. So, suppose this is our graph and these are the

weight. So, if 5, 12, 14, 8, 3, 10, 7, 15, sorry 7, 9, 15, and we have same. These are our

minimum spanning tree; so this one, this one then we at this one.

Now we take some vertices A vertex, like we can take this, this, this vertex as a; suppose

this is our A vertex and the remaining is V minus A or A compliment. Now we consider

all the bridge edge. So, this is the bridge edge; the bridge edge means vertex one, so one

part is in A another part is in A compliment. So, this is bridge edge, this is bridge edge,

this is bridge edge. So, among this the theorem is telling the minimum so this is the

minimum 5, so 5 means in minimum spanning tree.

So, if we take another A like this say if we take this is as our A suppose this is our A.

Now what are the bridge edge for this? If this is our A, our A compliment is all this, this

is our A compliment or V minus A. So, then this is the bridge edge, this is the bridge

edge, this is the bridge edge, this is the bridge edge, among this which is minimum 7 is

the minimum and we can easily check 7 is in the minimum spanning tree. So, that is the

theorem is telling.

So, this theorem is telling if we take a any set A subset of the vertex; so if we take these

as A and if we take these as the A say and the remaining are in A compliment then we

considered bridge edge this two is the bridge edge so among this, this is the minimum.



So, this has to be in the minimum spanning tree and that is the greedy choice. And that is

the locally optimal. So, that is the greedy hallmark. Locally optimal: a locally optimal

solution is given us the globally optimal. So, if we start with this vertex we just take this

minimum h. So, this is the greedy choice. So, that is the locally optimal choice and this is

happened to be a globally optimal. So, that is the hallmark for greedy.

Let us try to put this theorem. Then we will use this theorem to have a algorithm which is

called Prim’s algorithm. So, this theorem is telling us if we take a set A, any set A ok.
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Suppose, so it take set A. So, suppose there are the vertices and it  has just draw; so

suppose we draw some vertices we are in A compliment. So, these are in A compliment

and this one, this one, this one, say this one. Suppose this are in A compliment b minus

A. And the white vertices these are in A say. And suppose we have say other; suppose

this is the bridge edge this is u and v. So, this is the bridge edge which is minimum

weight. And suppose that is not in the minimum spanning tree. Let u v is not in the

minimum spanning tree, so we have not having this edge in the minimum spanning tree

then we have to list a contradict summation. So, that is the way method of contradiction

improve this theorem.

Now suppose this is not in the minimum spanning tree which is basically u v. So, this is

the weight of;  and the weight of u v is minimum. So, if this is not in the minimum

spanning tree and this is a spanning tree. So, basically we have a edge which is a bridge



edge also and that is the edgewhich is connecting from, because we have to cover all the

vertices, so we have to cover A and c compliment all the vertices. So, they are has to be

edge where that edges a bridge edge and that is we are assuming that is not this one. So,

suppose this is this one. So, in set of this if we take this edge and if we remove this edge

then this is also a spanning tree and this is the weight is minimum, because this is the

minimum bridge edge. So, that contradicts the fact that that weight is minimum, so it is a

contradiction. So, in the minimum spanning tree this has to be there.

So, this is the way a contradiction I approve this. Now, based on this theorem we have a

algorithm which is called Prim’s algorithm which is basically greedy algorithm to find

the minimum spanning tree.
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So, let us write the Prim’s algorithm. So, what are the inputs? Input is a graph, it is a

undirected graph and we have a weight on the edges this is the input and the output will

be a minimum spanning tree. So, that is the output. So, what is the idea? So, idea is to

maintain a priority queue. So, we maintain V minus A as a priority queue Q and we key

each vertex is vertex in queue with the weight of the list weight edge connecting it to to

A vertex in a to A vertex Q A, ok.

So, connecting it to A vertex in A. So, basically what we do? We basically so we have a

graph. So, we basically start with the vertex S and we consider. Now we start with A

vertex, so A is constant initially S now. So, that is the starting vertex it could be any



vertices.  Now  we  consider  all  the  bridge  edge  which  is  connecting  from  S  to  A

compliment basically. And that is the key value of the vertices. And we put everything

into the Q and the Q is basically maintaining the; this is the priority queue we are it could

be array also it depending on how we are implementing. So, we can just have a array, so

if V is A vertex . So, you can have a array if there are m vertices, so V 1, V 2, V 3 V n.

So, among this vertex we consider A vertex say k V k as S this is our S.

Now we keep the weight of the each vertex as the minimum the at the weight which is

connecting from that vertex to A. And now we choose the minimum weight edge and that

must be in those minimum spanning tree and that is the greedy choice. So, we cut we

capture that vertex in A and slowly we grow the tree. So, we start with vertex S and

slowly we grow the tree. So, that is the idea, ok.

Let us write the code then it will be more clear.  So, let us write the code for Prim’s

algorithm pseudo code.
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So, initially everything is a Q. So, this Q is a priority Q, e we can just have a array or the

heap implementation for that will come to that. And the key value of V is infinity for all

v in V and the exception vertex which is the starting vertex which we put the key value

as 0 for some arbitrary S from V. So, we choose A vertex to start, that is the starting

vertex. Then, so while Q is not empty; obviously, Q is not empty initially. So, we just



extract the minimum from this Q; extract mean from this Q. And then after extracting

means, so then we just update this Q value of the vertex which are adjacent to u.

For each V in the adjacency list of this u; so what we do? Do if degree of v do not degree

here we are using the key value do if v is a Q and the u v is less than Q of V then we

change then the key of V is basically w u v. And you make it a responsible vector. Now u

is responsible for the degree of V change. So, this is sort of responsibility vector. So, this

is 6, 7, 8, 9, and finally in 10 at the end this V comma pi V will give us the MST.

So this is the code and this operation is basically this operation is called decrease key.

So, if this key value is less we are going to that particular position and we are making the

value changing the value. So, this is the decrease key operation. So, this is the pseudo

code for prince algorithm. So, basically what we are doing we are starting with the vertex

and we are initially we have putting vertex to the key value is infinity, because initially

nothing has explore; except a vertex S.

So,  if  we just  implement  this  using  a  array.  So,  we have  A vertex  this  is  the  array

implementation suppose we have n vertices and we chose A vertex S any of this vertex

will be S. And initialization is we have this is the key value we have putting everything is

infinity except these has 0.

Now, once you extract the minimum since this is 0 so this will be extracted and this we

are going to put in basically extract mean means- it is deleted from the Q and it is added

in A. So, it is deleted from the Q it is added in A. So, everything is infinity 0 is the

minimum, so S will be the first u. Now we consider S is any we chose a; arbitrary vertex

as S starting vertex now we consider all the adjacency vertex of S. So, this is our u is the

first vertex.

So, now it was having that is key value is infinity initially. Now this has a weight, now if

the weight is less than the key value. So, initially it is infinity; obviously, that if that

weight is not infinity, so this will be less than so we have to change this key value. So, if

this is say this vertex is V then if this infinity now if this has some value, so this value we

are going to root over here. So, this way we update all the adjutancy vertex of u. And we

make a responsibility vector like for this change, for this degree change this vertex is the

responsible. And then we will repeat this until the Q is empty, then we will choose the



next vertex. So, basically we start with A vertex and slowly we grow the tree; that is the

idea.

Let us taken example how we execute this. So, this can be implement using the heap also

in that case the decrease.  So,  we will  come to the time complexity of this when we

analyze the Prim’s algorithm. So, let us take a quick example of the Prim’s algorithm.
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How it is working? So, suppose we have this graph the same graph let us draw. And

these are the weight we have 5, 14, 8, 3, 10, 7, 9, 15. So, this is the input, this is the

graph we want to execute the Prim’s algorithm. So, we put everything into the priority

queue it could be array- simple array. Now, so we put every key value key of V is to be

infinity except some starting vertex; suppose this is the starting vertex. So, this is the S

starting vertex. And we put everything to be infinity the key value, because nothing has

explored this is the initialization.

Now, everything is in Q with the key value infinity except this vertex. Now we extract

the minimum, so extracting minimum means. So now, Q is basically all the vertices; now

extracting minimum means it is getting the minimum it is deleting from the Q and it is

adding in A. So, this vertex is added in A. So now, u is basically s, ok.

So, now we consider all the vertex adjacent to this. So, these are the vertex. So, this is V

for this V key value was infinity, now this is 15 so 15 is better than infinity. So, we have



to decrease this key. So, this is now will be 15. And we have to put a mark that this

vertex  is  responsible  for  this  change.  So,  similarly  this  will  be  7  and  this  vertex  is

responsible for this change. So, this mark is needed. So, let us use another color for this

mark. So, this is now 10 and these vertexes responsible for this change, ok.

So, now this is our; now this is in A and this is in Q P minus A. Now again we will do

the; so Q is not empty, now again we will do the extract mean if you do the extract mean

who is the minimum everything is infinity except this is 15, this is 15, this is 7. So, this is

our next u. So, we choose this u and this will be extracted from the Q. So, this is our next

u, now if this is u now we consider all the vertices adjacent to you. So, now, this is

infinity now this will be now 9 and we put a arrow their because for this change this

vertices responsible. Now this is another vertex, this is infinity, now this is 12 and we

have to pay a arrow for this, and also this is infinity, now this work this is 5 and have to

put a arrow for this. And this is already in q so we do not need to do anything, ok.

So, we started with this we captured this vertex. Now which is the minimum? Now 5 is

the minimum, so you extract 5 form the Q and put it in A. So, once we extract 5, so we

check all the vertices which are adjacent to 5. So, this is vertex, this was infinity, now it

is 14. So, 14 is better than infinity so you need to perform the decrease key operation. So,

this will be 14 now and this is the responsible vector.

And now this one, this one was 12. Now, we have a better one which is 6. And now these

was responsible for this change now. Now for this change, so has to be deleted. Now

who  is  responsible?  Now  this  is  the  responsible  for  this.  That  is  why  this  sign  is

important, so this responsibility vector. Who is the responsible for? The final change and

that will give us the minimum spanning tree.

Now, this is now this one ok, this one is 10 now this will be now 10, this will be now 8,

eight is better than 10, now this was earlier responsible now this is now responsible. So,

now, this is the situation now who is the next minimum next minimum is basically 6. So,

for 6 we have these two vertices adjacency vertices which are already in A. So, we need

to do anything in the next minimum next minimum is 8. So, this is our u now this is V is

already there we do not need to do anything, now we have to change this because this is

14  now  they  have  a  better  one  so  3  and  this  was  responsible  for  this  now this  is

responsible for this change.



So now, this is done, now next minimum is 3, but this for this you have added everything

now next minimum is 9, next minimum is this. And finally, after this we will follow this

length to have the minimum spanning tree. So, this will give us the minimum spanning

tree. So, basically the idea is we start with a vertex S and slowly we will grow the tree.

So, we start with A vertex S and we slowly capture all the vertices in a greedy way. So,

that is the locally optimal choice and it will become a globally optimal; that is a greedy

hallmark. So, we start with the vertex S then we e capture this vertex in a greedy choice

greedy way. So, slowly we capture all the vertices.

So, this is the example of Prim’s algorithm. In the next class we will discuss, we will

analyze the Prim’s algorithm and the time complexity basically. So, we will discuss the

time complexity in the next class.

Thank you.


