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So we are talking about longest common subsequence. So, we will just to recap. So, we

have given 2 Sequence x and y. 
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You have given 2 sequence one is of length m, other 1 is of length l. And you need to

find a longest common subsequence between this. So, for that we have if we simplify

this problem to finding the length of the longest common subsequence,  and we have

defined c i j which is basically prefix is length of the longest comma subsequence of a x

1 to i and y 1 to j and we have. So, this is the length of the longest common subsequence

up to prefix 1 to i after prefix 1 to j.

Now, we can find out c i j for I all i j then we are done because c m n length c m n is

basically length of the longest common subsequence of x and y. So now, we in the last

lecture we have seen a recursive formulation for this c i j. So, that is basically c i j. 
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So, that is basically c i j is c i minus 1 j minus 1 plus 1 if x i can to i j and it is basically

maximum of c i minus 1 comma j comma c i j minus 1 c i j minus 1. Where otherwise if

x i is not equal to x j. And we prove this part and to prove this part we have taken a

longest common subsequence z 1 to k which is a longest common subsequence between

x 1 to i comma 1 to j. And then we have seen that any subsequence.

So, this is also a 1 to k minus 1 is a longest common subsequence between x 1 to i minus

1 y 1 to j minus 1. So, this is one of the hallmark of dynamic programming problem. So,

for  dynamic  programming  problem  basically  you  have  2  hallmarks  this  is  the  first

hallmark. So, this is telling us a of a solution of a problem content the solution of the sub

problems and optimal  solution  to  a  problem contain  the  optimal  solution  of  the sub

problem. So, this is a longest common subsequence up to k. So, it is up to k minus 1 is

longest common subsequence of this ok.

So, this is a hallmark of dynamic programming problem. 
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So Let us write this dynamic programming. So, programming hallmark this is hallmark

number  1.  So,  what  it  is  telling  it  is  telling  the  optimal  substructure  the  optimal

substructure. So, it is telling an optimal solution an optimal solution to a problem content

contains  optimal  solutions  to sub problems.  So, like if  z up to k is  a LCS then any

subsequence any sub problem in his if we take j up to k minus 1 that is the optimal

solution that is the LCS of x up to in k my i minus 1 y up to j minus 1.

So, this is one of the hallmark for dynamic programming problem. So, if we have such a

hallmark then maybe you have to be fix our mind that maybe you have to go for dynamic

programming approach. So, this is one of the hallmark. So, you have second hallmark

also to reach that let us just write a algorithm for this so recursive formula. So, this is the

LCS algorithm, recursive algorithm.
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Recursive algorithm for LCS. So, basically we have finding the l s c of x y i j this is

basically length of the longest common subsequence c i j.

So now if x i equal to y j then we know it is basically then it is c i j is basically l s c of I

mean length of LCS of x y i minus 1 j minus 1 plus 1 this is the this case else. So, else 2

3 else we have c i j is max of max of the length of this 2, LCS of x y 1 index less and

other way i j minus 1. So, this is the this is the algorithm for finding the c i j this is the

recursive  call.  I  mean  now what  is  the  worst  case  for  this  algorithm?  You  want  to

analysis the worst case of this algorithm.

So, when is the worst case. Worst case is if worst case will happen if x i is not equal to y

j. Because in that case we have 2 call 2 call then you have to take the maximum. And

also size if x y equal to x j then we have only one column size is also both the index

reduced by 1, but if we have if xi is not equal to x j then you have to take we have to get

we have to have 2 call recursive call, and then we need to get the maximum of that. And

even the both the call we have only one index less. So, this is the worst case. So now,

draw the worst case recursive tree for this for a some example some values of m and n.

So, let us draw the worst case recursive tree.
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So suppose m is 3 n is 4. And we are in worst case. So, worst case means we have to go

for x i is not equal to x j. So, give a call with m 3 m 4. So, since it is worst case we have

to we have 2 calls which one index less. So, 2 4 then 3 and then after calculating this c 2

then we take the maximum. Again we are in worst case. So, this is index is 1 1 4 and this

is 2 3 again here 2 3 3 2. So, like this, again here 1 3 2 2 again here 1 3 2 2 like this ok.

So now this is common this as. So, this tree is common. So that means, we have same

sub problems, we have same sub problems over here. Because there common I mean. So,

unnecessary we are doing the work double basically. So, too said that we need to have

we need to memorize that I may whether we have calculated, that if you have calculated

corresponding c  1 3 then we will  not  calculate  again for this  3.  So,  there are  many

repetition over here. So, this is the what is the length of this height of this trees m plus n.

This is the height of this tree. So, this is another hallmark of the dynamic programming

problem. This is the many repetition of the overlapping sub problems. So, this is the

repetition. So, let us write that second hallmark of dynamic programming problem.

So, this is basically telling us overlapping sub problems. 
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So dynamic programming this is hallmark number 2. And this is telling us overlapping

sub problem, over lapping sub problems sub problems. So, what it is telling us? It is

telling so a recursive solution contained a small number of a distinct sub problems a

repeated many times a repeated many times. So, this is this is one of the hallmark for

dynamic  programming  problem  like  we  if  we.  So,  we  have  many  overlapping  sub

problems.

So, if we have. So, that is that is one indication that now we must go for the dynamic

programming technique. So, this is the second hallmark. So, if we see that our we have

some recursive for formula and they are we have this type of overlapping sub problems.

So, many repetitions are happening, then we must be ready for now it is time for go for

the dynamic programming technique. So now, let us let us modified that algorithm which

recursive algorithm to avoid this repetition.  So, that  is  the memoization.  So, we will

memorize the value which we have calculated. So, if you have calculated some value we

will memorize that we will not re calculate again.

So, that is the memoization algorithm of that finding LCS. 



(Refer Slide Time: 14:11)

So, let  us just Memoization not memorization memoization algorithm for finding the

LCS. So, the remaining part is same all the thing if we have already calculated some

value will not re calculate again so; that means, if c i j is nil is nil; that means, it is not

calculated the only we go for calculating it yeah. So, if this then we will go for then if

then remaining part is same this, then c i j is basically length of x y i minus 1 j minus 1

plus 1 else c i j is basically max of this 2 length of i minus 1 comma j.

So, this part is same as earlier only thing we have a check point over here to avoid the

recalculation. If we are calculated the value will not going to recalculate again, that is

why it is memoization we memorize that if we also calculated we will not be calculated.

So, that you will  give us the dynamic programming technique.  So, it is basically the

bottom of technique. So, it is a tabular technique. So, we will just try to find put this c i

j’s. 
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So, it is basically dynamic programming approach. So, idea is basically computing that

table bottom of.

So, let us just take that example. So, you have the x value and y value. So, A B C let us

take a x sequence and y sequence D A B. So, this is our x sequence and we have a y

sequence B D C A B A B D C A B A. So, we just take this table like this. So, this is a

tabular method. So, let us so, this is this we put in a table. So, this is our x sequence

starting from here, this is our x sequence and this is our y sequence. And we want to

calculate this c i j’s c i j is basically the bottom of way we will calculate this ok.

So, these are all 0 because this y is not started yet, and there is no common thing. So,

these are all 0 this means are all zeros. Now we will calculate say this field. So, this is

our so, for this field we need to take these and these value. So, if you take these and these

value. So, this is basically x c 1 1. This is basically c 1 1 c 1 1 is basically. So, it depends

on x 1 y 1. X 1 is a y 1 is B. So, if you use the formula they are not same. So, it is

basically maximum of c 0 1 comma c 1 0. So, these 2 maximum of these 2 these 2 are

both 0. So, it will be 0 ok.

Now, this is basically c. So, x is 2 c 2 1. Now x 2 x 2 is b x y is. So, they are same. So,

they are same means the formula is basically c 1 0 plus 1. So, this plus 1. So, this will be

1 like this. So, similarly we will take these 2 these 2 are not same if these 2 are not same

then this will be maximum of these 2. So, maximum of these 2 is 1. Then again we have



this 2 is same. So, it will be this plus this plus 1 So 1. So now, we take these 2 these 2 are

not same maximum of these 2 is 1, then we take these 2 it is one not same maximum of

these also 1 and we take these 2 these 2 are same. So, it will be this plus 1 1.

Now, again here. So, we compare these and these 2 are not same maximum of this 2 is 0,

this and this maximum of this 2 is 1, these and these are not same maximum of these 2 is

1. So, basically you are using that recursive formula. But this is the tabular method if we

have calculated that c i j we have not recalculating is in. So, that is the memoization and

this is the dynamic programming technique. So now, these 2 these 2 was also not same.

So, it will be maximum of these 2 1. Now these 2 are same. So, once these 2 are same it

will be this plus 1. So, this will be 2, that recursive formula. Again these 2 are not same.

So, maximum of these 2 to these 2 are not same maximum of these 2 2 like this.

So, let us just fill it. So, this is not same 0 this not same one this same. So, this is 2.

These 2 are not same maximum of this 2, to this 2 are not same maximum this 2 these 2

are not same 2 these 2 are not same 2. Again this 2 a this these and this is 1 they are

same. This is not same this is 1 maximum of these 2 this 2 is not same maximum of this

2 not same maximum of this 2 not same maximum of this 2 these and these are same. So,

it will be this plus 1. So, 3 sorry 2 plus 1 3.

So now these and this these and these are different. So, it will be maximum of these 2 3.

So, we continue like this. So, this these 2 are not same maximum of these to 1 these 2 are

same it will be 2 these 2 are not same maximum of these 2 these 2 are same it will be 3

this 2 are not same. So, 3 this 2 are not same again 3 now these 2 are same. So, it will be

4 this plus 1 it will be 4. Now again these 2 are same. So, it will be 1 these 2 are not

same maximum of these 2 2 not same 2 not same 3 maximum of these 2 3 again these 2

is same. So, you have these 2 is basically same we have 4 and these 2 are not same

maximum of these 2 4.

This is basically a one c in comma n, this is basically the LCS of length of the LCS of x

comma y for the full sequence. And this is what we are looking for. We need to you want

to find out c m n. So, this is basically c m n. And this is the dynamic programming

technique this is the bottom of way. So, if you have calculated the c i j’s will not re

calculate again. So, this is the memoization. So, we will we will store this value, and we

use  this  value  to  get  the  this  thing.  So,  this  is  the  length  of  the  longest  common



subsequence and length of the longest common subsequence is 4 for this 2 sequence x

and y ok.

Now,  the  question  is  from here  how we  can  find  the  longest  common  subsequence

because  we  have  simplified  that  problem.  We  need  to  find  the  longest  common

subsequence. So, we reduce the problem into to find the length of the longest common

subsequence. Now you are interested after getting the length you are interested to find a

longest common subsequence. So, for that what we need to do? We need to follow this

path. So, this path we need to follow. So, maybe we can take this one, then we can take

this one, we can take this one. And we can take this one. So, this will give us what this

will give us which sequence this will give us A. And then this will give us B. And this

will give us C. And this will give us again B. So, this is a longest common subsequence

is an if you follow this path this one you need if you follows this path, this one this one

this one and this one.

So, this will give us what this will give us this is for B and this is A and this is D and this

is again this is again B. So, this is also longest. So, if I follow following this path we can

get  the  along  x  common  subsequence.  So,  so  we  have  to  find  a  longest  common

subsequence  we  simplify  this  problem  to  find  the  length  of  the  longest  common

subsequence. So, by this dynamic programming method we got the length after getting

the length we just follow this path to get the longest common subsequence. So, what is

the time complexity for this algorithm for this recursive algorithm? So, basically we have

a if the length of this is m.

So, the time complexities. So, if x is of size 1 to m, and y is of size 1 to n. So, basically

to compute this the time is basically order of m into n. So, this is the time complexity for

p p at the table. So now, also p p at the table we can get the length of the longest common

subsequent.  So,  this  is  the  dynamic  programming  technique  and  we  illustrate  this

technique by an example which is called longest common subsequence problem and. So,

for any dynamic programming technique we should have such kind of recursive formula,

and we should have 2 hallmarks.

So, in the recursive formula we should have optimal substructure hallmark. So, that is

telling us if we have a solution of a problem, that should contain solution of the sub

problems. That is the first hallmark of the dynamic programming technique.  And the



second hallmark is overlapping sub problems. So, if we can see the many ah many sub

problems  are  repeating  basically,  then  we  must  think  that  now it  is  time  to  go  for

dynamic programming technique ok.

Thank you.


