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So, we talked about dynamic programming. So, it is a design technique like divide and

conquer.
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So, we know one designing technique is divide and conquer technique. So, there this is

also a; this is a design technique we know. So, we have seen merge sort quick sort all that

divide and conquer technique. So, like we have a problem of size and we reduce the

problem into sub-problems of lesser size and that is the divide step and in the conquer

step, we solve recursively solve this sub-problems and once we got the solution of the

sub-problems then we combine the solution of the sub problem to get the solution of the

whole problem. So, this is the divide and conquer technique. So, dynamic programming

is also a design technique.

So, we will discuss this through an example through a problem which is called longest

common subsequence problem.
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So,  we learned  this  technique  through  an  example  which  is  called  longest  common

longest common subsequence problem LCS. So, what is the problem? Problem is we

have given 2 sequence X and Y. So, given 2 sequence X is of size m and Y is of size n.

So, we need to find a find a longest common subsequence which is common to both X

and Y. So, this is the problem. So, this is called LCS problem. So, finding a longest

common subsequence between 2 sequence X and Y, suppose we have let  us take an

example  suppose  X  is  a  sequence  like  this  A,  B,  C,  B,  D,  A,  B  and  why  is  there

subsequence B, D, C, A, B, A. So, suppose these 2 are my given sequence.

Now, we need to find the longest common subsequence. So, first of all, we need to find a

subsequence. So, for example, A, B is a subsequence of this because this is A then B. So,

A B is a subsequence A B is common to both of them, but A B is of length 2. Now do

you have any length 3 subsequence. So, like B, C, B. So, B, C, B is also is a subsequence

of  X and Y,  but  this  is  of  length 3.  now we want  to  see whether  do you have  any

subsequent of length 4.
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So, let us try that. So, do you have any subsequent of length 4 yes B, C, B, A. So, our B,

C, B, A; this is a subsequence of length 4. Now we can check is there any subsequent of

length 5. So, that we can verify there, we can check that there will be no subsequence of

length 5 so; that means, the length of the longest common subsequence is 4 and this is

one of them because we may get another subsequent like this. So, D, D, A, B. So, B, D,

A, B. So, this is also subsequence of length 4.

So,  that  is  why  it  is  a  longest  common  subsequence  not  the  longest  common

subsequence.  So, there  could be many subsequence of  line length  4,  but  the longest

length is unique. The length of the longest common subsequence is unique which is here

is 4, but we may have many such subsequence. So, that is our problem. So, how to get

that  such longest  common subsequence;  how to find a longest common subsequence

from a given 2 sequence X and Y? So, what is the main approach? So, what is the main

approach how we can proceed?
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So, main approach could be we can take a subsequence we have given to sequence X and

Y. X is of length m and Y is of length n. So, this is the neighborhood. So, what we do?

We take a subsequence from X and we check whether that is a subsequence of Y or not.

So, this is the approach check every subsequence of X is. So, we take a subsequence, we

take  every  subsequence  of  X  and  check  whether  it  is  a  subsequence  of  Y or  not

subsequence  of  Y or  not.  So,  we  take  the  subsequence  from X and  then  we check

whether that is a subsequence of Y or not. So, to check whether it is subsequence of Y or

not, it will take order of n time because this is the length of the Y sequence. Now how

many subsequences we can have from X. So, there is that is the power set basically.

So,  basically  this  approach  there  could  be  2  to  the  power  n  subsequence.  So,  this

approach will  take order of 2 to the power m into n exponential  time algorithm. So,

which is not acceptable this is very expensive this is exponential time algorithm to the

per m not even polynomial time. So, , but this is this is one this is a would force method

where one can take one can try for all possible subsequence of X and can see try to see

whether this is a common subsequence of Y or not. So, now, we want to do something

better. So, to do better; what we do? So, we transfer we convert this problem into we

want to simplify this problem. So, basically our problem is to find the longest common

subsequence between X and Y.
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The given problem is problem is to find longest common subsequence between X and Y.

So, what we do? We just simplify this problem instead of finding the longest common

subsequence we want to find the length of the longest common subsequence. So, we take

the simplified version of this simplification.

So, we want to get find the length. Length of the longest common subsequence of X and

Y and that length is unique this length is unique in the example, we have seen there are

many longest common subsequence there are many subsequence of length 4 and that is

the longest  one,  but  the length of the longest  common subsequence that  is  4 that  is

unique. So, this length is unique. So, now, we convert this problem into the problem of

problem finding the length of the longest common subsequence and from there we will

try to get the greater longest common subsequence. So, this is something simplification

of this problem. So, we first try to get the length of the longest common subsequence

which is unique and then after getting the length from that elbow, which we will use

basically we will use the dynamic programming technique then from there after getting

the length.

We will try to find out the longest common subsequence. So, this is the problem. So,

now, we want to find the length of the longest common subsequence.
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So, for that we will use some prefix notation. So, we will use some notation on X and Y.

So, prefixes. So, we denote the C i j which is basically length of the longest common

subsequence between X 1 to i and Y 1 to j. This is the basically length. So, X i j; so, we

have a X sequence which is this is the X sequence which is from 1 to m and we have a Y

sequence which is from 1 to n. So, basically we take a sub; we take a subsequence of this

up to i and here say up to j. Now this is X 1 to i and X 1 to j. So, we denote C i j is

basically the length of the longest common subsequence of X up to i prefix i and Y up to

prefix j. So, now, if we can find out this C i j for all i and j then we are done why because

we want to find the length of the longest common subsequence of X and Y.

So, basically we are looking for C of m comma n. This is basically length of the longest

common subsequence of full X and full Y. So, if we can find out C i j for all i and j then

we can then we are  done because  we can get  the C m n also.  So,  now, this  is  the

definition.  So,  now, we want  to  find out  a recursive  formula for  this  C i  j  and that

formula  will  help  us  to  have  a  algorithm design  technique  which  is  called  dynamic

programming technique. Every dynamic programming technique we should have such

kind of recursive formula.  So,  that we have to define the formula.  So, let  us have a

theorem on that C i js.
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So, C i j; so, this is the recursive formula for C i j. So, let us write this in a theorem. So, it

is telling this is the recursive formula the recursive formula for C i j.

So, what it is telling recursive formulation or formula it is telling us C i j is basically C i

minus 1 comma j minus 1 plus 1. If X i equal to Y j otherwise, it is maximum of this 2

term maximum of C 1 prefix which is or C i comma j minus 1 if otherwise. So, this is the

recursive  formulation  for  C  i  j.  So,  see  C  i  j  is  the  length  of  the  longest  common

subsequence of the prefix from X 1 to i and Y 1 to j and so, if X i is equal to Y j then C i j

will  follow  this  recursive  formula  otherwise,  it  will  follow  this  recursive  formula

maximum between these 2. Here also we have 1 index less in i or j. So, whichever is the

maximum? So, this  formula will  give us a design technique and that is  the dynamic

programming technique we will come to that so, but before that let us try to prove this

formula.

Let us try to prove this. So, we will prove this part and remaining part will be similar. So,

we want to prove that C i j is equal to C i minus 1 plus 1 if X i equal to X j.
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So, let us prove this. So, suppose this is our X sequence; this is our X sequence and this

is our Y sequence and X is starting from 1 to m and Y is from 1 to n and suppose this is i

and this is the j this is j and in this case, these 2 are same the value over here is same; this

to a same value. So, X i is basically Y z. So, if X i is equal to Y j we have to prove C i j is

equal to C i minus 1. So, we need to prove C i is equal to C. So, let us let K be the length

of the longest common subsequence between these 2. So, LCS of X 1 to i and Y 1 to j

and suppose this is we denote by j. So, this is the basically j 1 to K is basically LCS of X

1 to i comma Y 1 to j let. So, we length up the longest common subsequence is K and

suppose j is the one such subsequence common subsequence between X 1 to i j 1 to j.

Now, our claim is the X j is this is our claim i, sorry, j K is basically this common value

this is our claim we need to prove this, we need to prove this we need to prove that that

X K is basically sorry j K the last term last common alphabet is basically X x i and Y j.

So, how to prove that suppose it is not; suppose it is not; suppose the j is j K is not these

2. So, j K will be somewhere here.
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This is the j K which is the common alphabet between X and Y. So, this is the j K. Now

if we just take this one. So, this is these 2 are same. So, we just take one to K concatenate

with  X i  which  is  same as  this  is  a  subsequence  in  X which  is  same as  j  1  to  K

concatenate with Y j because X is Y j now. So, this is a common subsequence between

these 2 are same. So, this is a common subsequence between X up to j and Y up to a X

up to X Y up to j.

So, this is telling us the length of the longest common subsequence is K plus 1 which

contradicts that length is K. So, this is the contradiction this is the contradiction because

we assume length  is  K,  but  here  we are  getting  length  is  K plus  1.  So,  that  is  the

contradiction so; that means this is true. So, that means, X Z K is basically the last term.

So, Z K is last term.
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Now we take Z up to. So, Z K is basically X i which is basically same as Y Z. So, now,

we take Z 1 to K minus 1. So, you just remove the last term. So, this is a common

subsequence common subsequence between X up to i minus 1 and Y up to j minus 1

because we are just removing the last part. This last part is basically our it Z K. This is

basically our Z K which is same as this. So, we are removing this last part, then this is a

common subsequence of these 2 not only common subsequence.

We can claim that this is a longest common subsequence why. In fact, this is a LCS of X

1 to i minus 1 comma Y 1 to j minus 1, why so, because suppose this is a common

subsequence. Now suppose this is; if this is not a longest common subsequence, this is of

length K minus 1; that means, there is a subsequence of length K which is more than K

minus 1, if there is a subsequence of length K, then we can add these 2. So, which will

give us a common subsequence of up to i X up to j which is of length K plus 1. So, again

which contradict the fact that K is the long length of the longest common subsequence

between X and X up to Y; Y up to j  so; that means,  this  is  true.  So, Z is  a longest

common  subsequence  of  this  so;  that  means  the  length  of  the  longest  common

subsequence.
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So, Z is basically one; this is basically a longest common subsequence a longest common

subsequence of X up to i minus 1 and Y up to j minus 1 so; that means, length up the

longest common subsequence of this i minus 1 j minus 1 basically K minus 1 so; that

means, C i minus 1 j minus 1 is basically K minus 1. So, this we establish; now what is C

i j? C i j is basically C i j is K which is basically K minus 1 plus 1 which is basically C i

minus 1 comma j minus 1 plus 1.

So, this is the first part of the theorem and the second part will go similar  way. So,

second part means if this is the proof when X i equal to Y Z and the second part is if X i

is not equal to Y j then we have this formula C i j is maximum of one index list C i minus

1 comma j comma C i comma j minus 1 and this prove we can for similar way one can

argue this proof. So, this is the proof of this.

Now, this will give us a recursive formula. So, let us start with the; so, this is one of the

hallmark of dynamic programming technique.
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So, basically we have this result C i j is basically C i minus 1 comma j minus 1 plus 1, if

X i equal to Y Z and C i maximum of C i comma j minus 1 or C i minus 1 comma j. So,

this will give us a algorithm recursive algorithm. So, this is basically LCS of X comma Y

i j. So, if X equal to this, then C i j is basically sorry C i j is basically LCS of X comma Y

i minus 1 j minus 1, else C i j is basically maximum of this is the length of the LCS X i

minus 1 comma j comma LCS of X Y i comma j minus 1. So, this is a recursive formula

recursive algorithm. So, the worst case will be when this is not equal to in that case, we

need to compute this both term and the size is all is only in the one index reduce.

So, we will continue this in the next class, where we will we will talk about how we can

use this recursive formula to have a dynamic programming technique. So, you have a

hallmark for dynamic programming technique. So, we will talk about this in the next

class.

Thank you.


