
An Introduction to algorithms and analysis
Prof. Sourav Mukhopadhyay
Department of Mathematics

Indian Institute of Technology, Kharagpur

Lecture – 34
Computational Geometry

So we start the computational geometry. So, we will talk about the not much more more

lecture on this area just maybe two lectures on this. So, this is the neat field for geometric

problems.

(Refer Slide Time: 00:42)

So, this is the area the computational geometry is basically algorithm for solving the

geometric problem, this al this is the area where we proposed the algorithm for solving

any geometric problem solving geometric problem. So, any geometric problem if we

want to solve then if you have to propose some algorithm for that, that is comes under

this area which is called computation geometry. So, it could be geometric problem in any

dimension it could be one d it could be 2D two dimensional or it could be some high

dimensional also ok.

(Refer Slide Time: 01:41)

So. So, now, to start with let us talk about what are the fundamental objects in geometry.

So, what are the objects fundamental objects in geometry. So, a point. So, point means it

could be any dimensional pair point here if this point is on two d plane, but it could be in

any higher dimensional point it could be a three d then we have three compound three

dimension x x y z it could be d dimensional place. So, the point and a line segment this is

a line segment and it could be a line. So, these are the six fundamental object in a in

geometry a point a line segment and the line ok.

So, now suppose. So, what are the basic structures we can take suppose you have some

geometric problem we can discuss suppose our our input is some points. So, here we

have given some points.

(Refer Slide Time: 02:42)

So, these are the points it could be any dimensional points. So, now, maybe we have to

think for finding a say polygon using this point this is the smallest intersection which is

covering all the points. So, this is basically polygon. So, given a point set. So, this is the

point set we have this is a point set given a point set may be one structure may be we

need to find out the smallest region covering all the points.

So, this is basically polygon or maybe we have to have a triangulation problem like we

have these points we have to form the triangle triangle using these points. So, like this.

So, minimum number of. So, triangle. So, this is the triangulation -[triangu]lation or

maybe we have to find given a points we have to find the say convex hull. So, this is the

convex hull. So, this is a closed region in which if we take any two points then the line

should be inside the region. So, this is called convex hull. So, these are some geometric

structure. So, these are some problems we have given the points we need to construct

this. So, there are others structures as well also available.

So, basically we are if we have interest you can see this book this is mark mark mark

book. So, this book contained a few more algebra a few more structure on this. So, this is

the book for this todays lecture we will follow this books and tomorrows lecture the

other next lecture will follow our textbook. So, let us start with the problem which is

called orthogonal range search. So, this book contains some more applications on

geometric problem. So, this is the very good book on computational geometry. So, if you

have interest you can go through the details on this book. So, our todays problem is

orthogonal range search orthogonal range searching ok.

(Refer Slide Time: 05:31)

So, the idea is suppose we have the n points. So, we have given n points input is n points

n points it could be any dimension say d dimension and we have given a range

orthogonal range. So, the query is. So, so. So, if it is a two dimensional point. So,

suppose you have some two d points is given. So, there we have two dimensional plane x

axis y axis. So, we have some two d points and we have some range. So, we have some

box. So, parallel to the axis. So, this is parallel to the axis. So, this is also given. So,

suppose this this is also given.

So, we have given a range range means the rectangle here in two d and in three d it will

be like this. So, it will be like this. So, we have a box like this. So, so this is x y z axis.

So, basically we have given a box parallel to the range parallel to the axis and it could be

higher dimension also and we have to the our query is three types of query we can do is

there any point in this range this is the first query if the answer is yes then how many are

there this is the second query then then tell us the points give the points if there are k

many we want k points which are in the range.

So, these are the three types of query one can get. So, is this problem clear this is this we

have given a range orthogonal range; that means, it is parallel to the axis x and then then

you have to find out the points which are in this range. So, this is called orthogonal range

search. So, how we can have a how we can handle this. So, so first query is are there any

point are any points this is the one query then second one is called how many if the

answer is yes then the return those return those like this ok.

So, now how we can handle this problem what is the net solution of this problem

suppose if it is d dimension. So, how we can check if point is lies in this range or not. So,

one sort. So, we take a point we just see the points dimen if it is two d points we check

the x axis x coordinate y coordinate and we have a for two d points we have this

rectangle then we check whether this is this x axis and x coordinate y coordinate is x

coordinate by y coordinate fitted in this box or not lying in this rectangle or not. So, three

d points we have three axis then x y z we check the three values if it is there.

(Refer Slide Time: 09:22)

So, this is the one shot solution one shot. So, what is the time complexity for this it is

basically order of we have n points order of n into d. So, d is the dimension if d is order

of one if d is constant then this will be order of n. So, this is the order of n times

algorithm ok.

So, now we want to do something better like we want to do some p processing because

this safety statistic now we are not changing this. So, if we. So, this study. So, we we

want to have a static data structure on this points n points. So, that we can do the search

in faster way. So, that is the that is the todays lectures on this orthogonal range search.

So, we want to have a static data structure for this. So, let us start with one d range

search.

(Refer Slide Time: 10:27)

Then we try to extend this for two d and high dimension. So, for one d what we have we

have some points on the line one dimensional points.

So, this is the real line. So, you have some points on this line. So, these are the points we

have and on this points. So, this is the this is start this is a set n n points are there and this

set is say suppose static set n points are there now suppose we have a interval. So, that is

the range this is the range search only range search we have interval say x one to x two

and now we want to find the points lies between here. So, that is the problem. So, how

we can do that can you use the technique which we know the interval tree we we we

learn this interval in the last i think last lecture yes. So, can you use that interval tree idea

that is the augmentation of the data structure can you use that idea.

How we can think of interval research like how we can think this point has a interval

then we can we have given interval x one x two then we can see how many intervals are

overlapping with this that is the idea. So, how a point can be represent at interval. So,

suppose this is x . So, x will be treated as x comma x. So, this is basically interval. So,

basically problem is interval search interval tree. So, if we can find interval tree then it

will be this problem will be solved when this will take how many times. So, if there are k

answers then it will take order of k log n to get the all the points k points, but this this

idea cannot be extended for two d that is the problem. So, we want to have we want to

extend this for higher dimension this cannot be extend for two d.

So, can you think other technique where we can do some p processing and then the query

will be much more faster. So, what if we sort this point if we just sort this point then just

to sort this point and store it into an array. So, this is the second idea. So, first idea is the

interval tree and the second idea is the sorting

(Refer Slide Time: 13:19)

So, what if we sort the points because this point is static points we can easily sort the

points and we can store into a and put into an array into an array. So, we have some

points sorted points. So, these are the points. So, this now points are sorted.

Now, what we will do now how to have this query the range search. So, we have given

two points x one x two say we have given an interval. So, here range is the interval what

we do excuse me. So, we do the binary search on this point and we do the binary search

on this point then we got the position and then the all the intermediate points are

basically our output. So, this is the idea. So, that will be basically, but the sorting will

take the order of a log n, but each binary search will take log n time. So, it will be

basically having two times binary search we are doing.

But we are checking this points. So, it is basically k plus log n where log n is the time for

binary search this is, but the problem is this idea cannot be extended for two d because

for two d we have x axis y axis. So, based on which axis we will sort. So, that is the

problem. So, this is cannot be extended for two d. So, now, we will think about some pre

structure whether we can have a three we can have a statics data structure which is

basically balanced tree then we can try to solve this query. So, that is the that is called

one d range search tree. So, this is the third solution one d range search tree. So, this is

static data structure. So, you have given n points how we can form from this tree. So, the

idea is we put all the points instead of see in that tree what we do if we distribute all the

points over the nodes what the nodes starting from the root to the leaf.

Now, here what we are doing instead of that we are putting all the points in the leaf at the

leaf level then we form a tree that is the idea. So, how to do that let us have a picture

(Refer Slide Time: 16:07)

So, suppose these are our points one six some arbitrary points twelve fourteen seventeen

then we have say twenty six thirty five forty one points we are storing into the leaf then

here try to form that tree and this tree we want to be balanced and this tree we want to be

balanced search tree.

So, now we want to put this to have this then we want to merge this merge this then we

want to merge this two similar way we will do like this you want to merge these two we

want to merge this two then merge this we want to merge this two merge this and then

we want to merge this and then finally, we want to have the root. So, this is the way we

are going to form the tree so we are putting every inputs every n nodes in the leaf

level and you want this to be a binary search tree. So, for that what we need. So, we need

to put a value over here such that it will be a binary search tree; that means, the it will be

greater than six and must be less than eight.

So, we can put any value between eight and six, but we are going to put the maximum

value of this node i mean like the idea is to put the maximum node value in the left

subtree. So, that is basically we will put it sixteen this is one this is twelve this is

fourteen maximum value in the left subtree is eight this is eight this is twenty six this is

forty one this is thirty five this is fifty nine forty three maximum value in the left subtree

is forty two and maximum value in left subtree is seventeen. So, seventeen. So, this is a

binary search tree why this is a binary search tree if you can check any node if you take

x.

Now, left subtree right subtree. So, this is less than equal to x this is greater than equal to

x this property is satisfying. So, this is a binary search tree this is a balanced binary

search tree. So, this is a good news. So, this is called one d range tree now we want to

use this to have a. So, this is our people this is a static data structure. So, we want to use

this for our query what are the intervals what are the points overlapping with a given

interval suppose given interval is seven comma forty one suppose we have given seven

comma forty one interval. So, this is x one this is x two.

(Refer Slide Time: 19:29)

Now, we want to see what are the interval overlapping with this. So, seven comma forty

one means. So, starting from here to forty one here so; that means, this one and this one

and this one and this one. So, the leaf in all these roots all these subtrees. So, when you

output if we if we just return this if we just return these roots and if we say that mine my

result is all the elements all the leaf nodes in these root where roots are basically eight

fourteen twenty six forty one. So, eight. So, the leaf of eight is eight leaf of fourteen is

basically twelve fourteen seventeen leaf of twenty six is twenty six twenty thirty seven

and leaf of forty one is basically forty one. So, this is the output. So, instead of returning

all the elements separately we just tell that these are the roots these are the trees subtree

is my answer.

So, what to get the elements the elements are in are intersection points of basically in the

subtree all the leafs. So, you have to go to the leafs and we have to find the. So, how

many such subtree will be occurring. So, is this clear. So, basically we are looking for the

subtree which we can output and we can tell our answer is our basically points are leafs

in this subtree. So, instead of returning all the leafs we just output the subtrees and then

we go to the leafs of this subtrees to get our points which are intersecting with the

intervals that is the idea. So, that that is what is called that is we are going to do in our

algorithm which is called one d range search.

So, the general idea is. So, we are going to return this tree this tree this tree this tree thats

it in our algorithm. So, upon after return after getting this tree we just take the leafs of

the tree thats it. So, for the time being let us erase this. So, let us just. So, this is the one d

this is the general one d range query. So, the we have given a interval x one x two.

(Refer Slide Time: 22:20)

So, the idea is we start with the root this is the root and then. So, we may find out there is

nothing interesting in left. So, you may have to go right nobody is there interested in left

So, we go to the right and then from here we see there is nothing interesting in the left.

So, there we go for the right. So, like this we continue. So, we see nothing interesting

here like this we continue until we reach to a node where we found something is

interested in left and something is interested in the right; that means, there are some

nodes which are in the left subtree which are relevant and there are some nodes which

are right subtree which are also ah relevant; that means, whose which are in the range.

So, that node is called split node. So, this is called split node split node means we have.

So, this is subtree this is another subtree so; that means, if both the subtree has some

nodes of our interest; that means, both the subtree have some nodes which is in the range

x one comma x two.

So, now we have to travel both the way now we start with this the left edge. So, we start

with here say. So, you go to the left edge. So, now, again say we go to the again say we

see there is nothing interesting in the ah left subtree we go to the right now suppose again

we go to the left; that means, everything is interesting over here if we are going to the

left; that means, all the all the subtree this is interesting. So, the then again from here

suppose we go left and suppose here we go right then all the there will be interesting like

this. So, these are the subtree which are interesting similarly we have to go like this. So,

suppose if we go right from here then all the subtree will be interesting here.

So, like this if we again go left then if we go right then all the subtree will be here

interesting like this we continue. So, basically our our answer is this subtree we are going

to return this subtree as the answer. So, once we return this subtree then we go to the

individual subtree and we get the leaf nodes and that is our in the range. So, this is a

general idea of range query and how many subtrees will be there basically how many.

So, if there are k nodes which are overlapping with this. So, there will be this is there

will be basically log k subtree or log n log k or log n intuitively it should be log n, but we

can show that there will be log k subtree will be there anyway we will talk about that. So,

this will be our basically output of the range subtree algorithm. So, this is the range

subtree algorithm.

So, in the next class we will talk about the pseudo we we will see the pseudo code of this

algorithm, but this is the general idea idea is to start we have a interval we see we match

with this. So, if nobody is interested in the left right then we go to the left we will see the

pseudo code in the next class then from here if you see nobody is interested in the right

we go to the left we go to the right then this way we reach to a point where we will we

will see every there is some some nodes which are in the range and there is some node in

the right which are in the range so; that means, this is the node called split node so; that

means, there is something interesting in the left path there is something interesting in the

right path.

So, then we continue like this. So, we will talk about the we discuss the pseudo code in

the next class.

Thank you.

