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Interval Trees

So we are talking about data structure augmentation. So, we have seen the dynamic order

statistics problem how we can use the data structure augmentation. So the so now, in this

in this lecture we will talk about interval tree the. So, before the problem let us just recop

the recap the data structure augmentation methodology.

(Refer Slide Time: 00:42)

So, the idea is so, idea is the methodology is basically so, we have to choose a underline

data structure. So, we have to choose a underline data structure and then after that we

have to determine the additional field of information we are going to keep for these data

structure for our problem. So, additional information we want to keep. And then we have

to see how this additional information can be maintained, when we do the modifying

operation like insertion deletion if we choose the underline data structure as the red black

tree like we did for dynamic order statistics.

And then the additional information we kept as the size of the subtree rooted at that node.

And the we have seen that modifying operation insertion will not take much is similar

type,  similar  time,  same time  as  we do it  for  the  red  black  tree.  So,  the  additional



information can be maintained with the same timing as the original data structure. So, the

timing for timing to maintain the additional information. So, this is also crucial because

if we spending much more time to maintain this additional information field then there is

no  use  of  these.  So  anyway  so,  this  is  the  methodology  behind  the  data  structure

augmentation.

Now, the interval tree problem is we have given some intervals there are basically time

intervals and that set is dynamic set. So, any interval can join at any point of time and

any interval can leave from any point of time. 

(Refer Slide Time: 03:21)

So,  so  we  have  a  dynamic  set  of  intervals,  basically  time  intervals  and  this  set  is

dynamic. We have a dynamic set of intervals. And then now query suppose we have this

interval say 7 10, 5 11 and say 17 19 and we have 4 8. So, these are the say 15 18 say 22

23. So, suppose we have a dynamic set of interval. So, this is a collection of intervals,

each is the interval their time interval this is a I, I is a interval and this is this is left of I

left endpoint. And this is 10 is the right of I right endpoint ok.

So, this is basically sorry low or high. So, low endpoint or this is the high end point. So,

this is low an low endpoint and this is high end point. So, any interval has 2 endpoints

low and high. So, this set is dynamic set. So, any point of time any interval can join and

any point of time any interval can leave. So, this set is S set. So, this S set is the this set

is basically this set is S, the collection of interval. And this set is dynamic set now we



need to do this query like this, then for a given interval, for a given interval, say we have

given interval I, we need to find an interval from S which is overlapping with I find an

interval from S which overlaps with I. So, that is the problem. So, our problem is to the

query is we have given a interval I. So, I has a low and high endpoint and then we need

to find the interval which is overlapping with this intervals. So, that is the problem.

So, for example, if I is say we have say interval say 8 or 9 14. If I is 9 14 then we need to

find an interval which is overlapping with 9 and 14 so.

9 and 14 is this 7 and 10 is overlapping with 9 and 14. So, we can just return 7 and 10.

So, we thought this problem we are just looking for an interval which is overlapping with

this. So, this is the problem. So, for this problem we need to maintain a data structure, we

need to have a data structure to maintain this set S. So, what we do we need to do the

data structure augmentation. So, so for that we will use a instead of having a new data

structure or data structure from the scraps, we just use a underline data structure and we

will do some augmentation there to act some new field. We store some (Refer Time:

07:52) here new information.

So, basically this is the methodology we choose and underline data structure. 

(Refer Slide Time : 08:00)

And here we are going to choose the red black tree, because red black tree is a balance

tree. So, per performation anything can be done in logarithm time. And then this is the



methodology of augmentation we are going to use for our problem. Then we need to

have the additional information. So, we need to have we need to determine additional

information which we want to store in the data structure.

And which will help us to solve our query, which will help us to help us in our problem.

So, our problem is the interval search problem. So, we have given time intervals and we

have given a query intervals, and we have to find out the interval which is overlapping

with this  query intervals.  So,  that that is  the problem. So, we need to determine the

additional information which will help us to solve our problem. So, this is additional

information we will keep the so, this is the key this is the interval basically. So, we will

put this intervals over here and here will use the max m is the so, basically we keep this

interval in a red black tree and using the key value as the left in point. So, red black tree.

So, basically red black tree, but key is so, so we will keep the interval each interval is a

node and the keyed key on low or the left endpoint. So, each interval is a node. Each

interval is a node and the key value the key we are based on the key we are we make the

binary search tree, based on the key value we are making the binary search tree if a node

key value is less it should go to the left part if is more right part like this.

So, we will make this structure the key using the left endpoint or the low of this I. So,

each interval is a node which is keyed on the low endpoint, and we are keeping the this

field we are keeping the maximum value rooted at that subtree. This is the basically m of

x m of x is the largest value largest value in the subtree rooted at x, largest value in the

subtree rooted as x, x means interval x I into x, x is an interval x is an interval. 

So, x is an interval. So, it has to endpoint low and high. So, based on the low endpoint,

we make the tree the binary search tree not only binary search tree is the red black tree.

And then this additional field we are keeping to store the maximum value of the of the

maximum largest  value  which  is  stored in  the interval  rooted at  x.  So,  we have the

example we have given example. So, let us draw the tree. So, with this additional field. 



(Refer Slide Time : 12:45)

So we just have this intervals 5 11 this are the low and high endpoints.

So, each interval is a node, and which is keyed as a low endpoint 8 9 sorry, 4 8 15 18 15

comma 18 and we have 7 comma 10 yeah. So, this is the these are the intervals we have

given and this is the tree we construct and based on the low endpoint, if you see 5 is less

than 17. So, 5 is here a 4 is less than 5 like this. So, 15, 15 is less than 17, but greater

than 5 it is here. So, 7, 7 is less than 17 7 is greater than 5 or 7 is less than 15. So, 7 is the

left. So, this is the binary search tree. Only binary search tree we can make it a red black

tree by giving the color this we can put black, these 2 black, these 2 black, this is black

and this is red and this is red. 

So,  we can  put  this  nils.  Now we need to  so,  this  is  the  red  black  tree  this  is  our

underlined data structure red black tree. Now we have a additional bit of information

which is basically max bit. So, this is the interval interval x and this is the max of x. So,

max bit means the maximum. So, this is x. So, maximum. So, largest element rooted at

that  tree now what is the.  So,  this  the nils.  So,  they are 0 basically  what  the largest

element rooted at this tree 10 because the that is the high endpoint. This is 8 this is 23

now what is the largest. So, this is the 10 is the largest in the left subtree and there is

nothing in the right subtree and this is the largest here. 

So, this is basically 18. Now what is the largest over here? 8 is the largest in the left

subtree, 18 is the largest in the right subtree, and the largest in this interval is 11. So, this



is basically maximum of these 3. Similarly here 18 is the largest in the left subtree, 23 is

the largest in the right subtree and the largest in this interval is 19. So, maximum of these

3 is 23. So, formula for m of x basically maximum of these 3, high of x high of x then

maximum of  left  of  x  and  maximum of  right  of  x.  So,  this  is  the  formula  for  this

additional information ok.

So, this is a red black tree with this additional information. Now we need to maintain the

how this  additional  information  can  be  maintained  when  we  will  do  the  modifying

operation like insertion and deletion. So, for that coloring will not be affect much. So, we

need to look at this rotation operation, how it will affect in the rotation operation. So, to

look at that let us just try to see whether we can maintain this additional information,

with the same time while we are performing the rotation. 

(Refer Slide Time : 16:47)

So, like this suppose we have this interval 11 15 6 20 and this is the say so we have a left

subtree we have a right subtree over here. So, this is 30 say we have 30 over here. Now

suppose we have we make this up this down this is alpha beta this is gamma, this is a

subtree rooted at this are the subtree. So, this is a tree. So, this is part of the tree we want

to see the how we can perform the rotation operation,  and while performing rotation

operation how we can fix this extra additional information in the same time. So, this is

the right rotate on this. So, you want to make this up and this down. So, so 11 15 will



come down and then this will be hanging here 30 and alpha beta. So, alpha this is beta

this is gamma ok.

Now this will be maximum of this 3 19 and this will be maximum this 3 30. So, this can

be.  So,  this  can  be  fixed  order  of  one  time  with  the  same timing  with  the  rotation

operation. Because rotation also need to change the point of view pointer. So, this is this

is not a So that means, this imply insertion and deletion will take the same time as red

black tree original red black tree insertion and deletion. So, that wise that that so this

augmentation is, so now, we will see how this extra bit of information this augmentation

will help us to have the search or interval query. So, that is the interval search ok.

(Refer Slide Time : 18:51)

So, we have a set of intervals we have a set of intervals which we are maintaining in a

that augmenting red black tree. And we search a query interval which is over we want to

see which is overlapping with this interval. So, we have a tree over here which is based

on our S this is this tree is coming from S set. So, what we are doing we are taking the

root  of  this  root  of  this  tree.  So,  basically  we have  this  tree  which  is  basically  the

intervals like this like this So on. So, this is the this is our tree and this is the root, this is

the on S set we are maintaining this thing. So now we have to so, given an interval I, I is

basically we have given lower of I and we have given I of I. So, basically we need to find

an overlapping interval with this. So, how we do so now, if there is element. So, until see

if x is not null; that means, if there is only the root and, and this low of I if the low of I if



the low of I is greater than high of x. So, this (Refer Time: 20:58) or low of x low of x is

greater than high of I. So, we have this we have this interval. So, this is our x this is the

root. 

Now we check whether I is overlapping with this. So, this is the check whether I is not

overlapping. So, how to check? So, we have a x interval. So, x is having here. So, we

have a x interval. So, x is basically having 2 endpoints this is the low of x this is the high

of x and we have an interval I, which is the query interval now when it will not overlap

with this x, x is the root. Now we check whether it is overlapping with the root, if it is

not  overlapping then  we  will  go  for  the  left  part  or  right  part  (Refer  Time:  22:02)

basically. So, before that we have to check whether it is overlapping with the x or not.

So, how to check that? So, basically so, when it will not overlap, either I is completely

this side. So, this is low of I and this is high of I; that means, if high of I is less than low

of x this is either this or if it is completely that side. So, completely that side means if

low of I is greater than high of x. So, either of these 2. So, this means the interval is

completely that side and this means interval is completely this side. So, this means they

are not overlapping, this means this condition means this whole condition means I is I

and x is not overlapping, not overlapping not overlapping.

If there overlapping then we can return x, if this is false either it is reached to a null nil.

So, so or it is overlapping if it is not overlapping, and it is not nil then we have to go

further left or right part. So, this that overlapping then we have to go further. So, how to

go for that? So, for that So, I and x is not overlapping by this condition then what we do?

Then we do we just check if left of x is not null. 

And low of I, if low of I is greater than max of sorry, if low of I is if left of x left of if

low of I just a minute. So, how to check this? If low of I is greater than m of left of x;

that means what? So, m of left of x so that means,. So, this is the m of left of x, So that

means, if m of left of x is less than low of I So that means, there is nothing interesting in

the left part. So, we are looking for a interval which is overlapping with I, if the low of I

is greater than m of left.

If low of I is greater than maximum largest value rooted under this part then there will be

no interval in the left part which is overlapping with I then we must go for the right part,

then x is right of a x else x is left of x that is it. So, if either then we return finally, we



returned x. So, either x is nil so that means, there is no interval overlapping with x or x is

this. So, this means is this clear. So, this means if. So, if the low of I if the interval we are

looking for. So, this is the low of I this is I ith interval. So, low of I.

If the interval we are looking for low value is greater than the left part  of the x the

maximum value of the left part of the x, then there is nobody interval will be there which

can overlap with I. So, we have go for the right part of the I. So, that is the idea. So, this

is the pseudo code for inter interval search and the what is the time complexity for this?

So, time complexity is basically log n. So, we will do just quick example. So, we will

just do some example on this. So, let us have the interval 17 19 22 23 5 comma 11, 4

comma 8, 15 comma 18 and we have 17 comma sorry, 7 comma 10. 

(Refer Slide Time : 26:45)

And we have the nils and we have the color. Now suppose we search we search the I is

equal to we want to search the interval 14 and 16. So, low of I is 14 high of is 16. So, we

will just execute the interval search we have seen now. So, we start with the root x and

we check whether this is overlapping with this. So, 14 16 is completely this side I means

it is not overlapping. So that means, and it is not null also. So, we then we have to fill

this part also. So, this basically 8, this is 10 this is basically 18, 18, 23, 23 ok. Now what

we do we just take x to be root.

And this is the nor overlapping, now this is basically 14 is basically less than 18. So that

means, we have to look at this part of the tree, if 14 is greater than 18 then there is



nothing interesting over here. Then we have to go for the right, but here 14 is less than

18. So, now, our x is this. Now we check whether this is overlapping with this 14 this is

not  overlapping  with  this,  now  we  check  14  left  part  of  this  now  left  part  of  this

maximum value is 8, but 14 is greater than 8. So, there is benefit to going to the left. So,

we will go to the right of the tree. Now this is our x. Now we compare this and this will

be overlapping. So, it will return as this return 15 18 this interval. 

So, 15 18 will returned. Now suppose we want to search for interval which is not there.

So, suppose we want to search say 12 and 14. So, how will do? So, we will start with x

over here. So, it is not overlapping. So, now, this for 12 is less than this. So, we will go to

this part now this is our x again we check it is not overlapping. So, again we compare 12

with these 12 is greater than we have to come this part this our new root, and then we

compare with 12 and this it is not overlapping, and we check 12 with 12 is greater than

we go to the right is nil. So, basically we stop and it is returning us nil so that means,

there is no interval which is overlapping with this. So, analysis of this so, the time is

basically order of log n to report one interval ok.

But the question is if suppose there are k intervals is overlapping with this and we want

to retrieve all of them. So, what then how we can do that? Suppose there are k intervals

which are overlapping with this interval I, which the given interval I and we need to

return all these k intervals. So, how to do that? Suppose k intervals overlapping with I

with the given interval with the query interval I. And we want to return all the interval

how we can do that?

So, what we can do we can first get the interval which is overlapping with this and then

we  delete  it  from  this,  augmented  red  black  tree  and  that  deletion  can  be  done  in

logarithm time, again we make the search after deleting that it will give us the second

interval which is overlapping with this. Again after getting that we delete it. So, basically

the time will  be k into log n. So, this  is  the time to report  the k interval  which are

overlapping with this. Because every time once we got the interval which is overlapping,

we will delete it because this is the red black tree deletion will be in log n time and after

deleting  that  note  that  interval  we  again  search  we  again  perform this  interval  tree

operations, searching.



And then again it will take logarithm time. So, this way it is the k log n algorithm, this is

the output sensitive algorithm ok.

Thank you.


